【摘 要】
:
人流量预测在城市交通管理和城市公共安全中发挥着重要的作用,准确预测城市区域的人流量具有非常大的挑战。一方面,城市范围的人流量数据是高维度的,而在原始的高维数据中通常包含冗余信息,这会对预测结果造成一定的误差,降低预测的准确度。现有的预测模型大多数都没有考虑高维度人流量数据对预测精度和算法效率的影响,并且网络结构复杂、参数量大,训练网络需要消耗巨大的成本;另一方面,人流量的预测受到空间结构关联性、动态时间依赖关系和外部因素(例如天气、节假日、活动事件)等诸多复杂因素的影响。针对上述问题,本文根据城市区域人流