论文部分内容阅读
随着智能化时代的到来,无人小车在众多领域中得到了广泛的应用。在未知环境下的避障技术已成为突破无人小车智能化发展瓶颈的核心技术之一。为了实现对障碍物更为准确的探知并控制无人小车作出相应的避障行为,需要引入多传感器系统以达到信息互补的目的。因此多传感器信息融合技术对无人小车能否实现良好的避障行为具有非常重要的影响。本文以自主设计的无人小车为试验平台,重点研究了多传感器信息融合技术以及基于模糊控制的避障算法,对各类无人移动平台的开发具有重要的理论意义和较强的实际应用价值。根据无人小车的避障功能需求,进行了无人小车的机械结构设计。然后建立了无人小车的运动学模型,并讨论了适用于无人小车的控制与驱动原理。确定了以STM32F407为核心的控制系统,对系统中的电气元件进行设计选型并完成整车的组装与调试。基于多传感器信息融合的数学方法,分析设计了自适应加权融合算法,并利用MATLAB对算法进行编程仿真。分析仿真结果发现:自适应加权融合算法的总方差收敛稳定在1×10-3左右,效果稳定,但是存在权值分配不当的问题。通过对算法迭代过程的优化,解决了权值分配的问题并发现数据融合结果误差在0.2%以下,表明优化后的算法具有较好的融合稳定性与精确性。基于优化后的自适应加权融合算法,分析了无人小车可能的避障环境以及避障策略。根据模糊控制原理设计了避障算法,制定了相应的模糊与反模糊规则。通过对无人小车在多种不同障碍物情况下的仿真,发现无人小车均能够避开障碍物的干扰。但运动过程中存在大量大幅度转向的问题,表明无人小车的运动不稳定。针对模糊控制避障算法中存在的问题,利用神经网络学习更新函数参数,实现了对模糊控制器的改进。分析仿真结果发现:改进后的最大偏转角度接近40°,较优化前减少了20%左右,转向次数明显减少。设计并测试了传感器测距以及电机控制程序,并通过无人小车实车实验验证了本文设计的避障算法的有效性与可靠性。