论文部分内容阅读
谷子(Setaria italica)又称粟,是我国的主要杂粮作物之一,耐旱耐贫瘠,适应性强,且谷子有明显的杂种优势,其产量比常规品种高出20%-40%。目前,谷子杂种优势利用的途径主要有温光敏不育系、显性核不育系。然而,经实践后发现这些方法都存在各种各样亟待解决的问题。化学杀雄法作为杂交育种的一种重要途径,对谷子发展杂种优势具有巨大的深远意义。本试验选用3种化学试剂乙烯利、马来酰肼、SQ-1,对3个谷子品种(衡谷13、豫谷18、晋谷21)的杀雄效果进行了试验。探索了其使用时期、使用浓度及品种差异性。同时研究了 SQ-1对3个谷子品种花器、花粉活力及农艺形状的影响。此外,还进一步研究了 SQ-1诱导的谷子生理型雄性不育幼穗活性氧、抗氧化物酶活性、可溶性蛋白、脯氨酸、糖类代谢、激素等生理生化物质的变化,为谷子化学杀雄育种奠定了一定的理论基础及技术储备。现将主要研究结果总结如下:1.田间试验结果表明,杀雄效果随施药时期、施药浓度不同而有所不同,其中乙烯利杀雄效果最差,在所试验的谷子幼穗分化发育的3个时期(幼穗分化初期T1、枝梗分化末期T2、雌雄蕊原基分化期到减数分裂期前T3)杀雄效果不明显;马来酰肼在谷子发育的T1和T2时期,杀雄效果不明显,在T3时期,杀雄彻底;SQ-1在谷子发育的T1和T2时期,杀雄效果较差,在T3时期,使用3-6 kg hm-2的浓度杀雄效果较理想,可以诱导3种品种(衡谷13、豫谷18、晋谷21)产生85%以上的不育率。2.5 kg hm-2的SQ-1对谷子杀雄效果最佳,可诱导3个品种高于90%的不育率,并且对雌蕊损伤不大,发育正常。此外,对植物其它农艺形状影响也都较小。马来酰肼虽然在T3时期能诱导高的不育率,但同时雌蕊生长受到严重损害。因此,SQ-1可以用来做为谷子化学杀雄剂,马来酰肼不适合做谷子杀雄剂。3.观察谷子花器、花粉活力结果表明,经SQ-1处理后,3个谷子品种花药皱缩干瘪,经碘-碘化钾染色后,呈浅黄色,缺乏细胞内含物,花粉粒形状不规则,还有不同程度的结晶。4.三个品种处理组植株在喷施SQ-1后不同时期,幼穗中H202的生成速率及02-、MDA的含量的变化趋势不完全一样。喷药后5天到10天,H202的含量不断增加,到第10天达到最高值,之后开始下降,呈现“低-高-低”的变化趋势。但O2·-和MDA含量则表现为第5天最低,第15天最高,呈现“低-高”的变化趋势。施药后同一时期相比,处理组中02·-、H202、MDA的含量明显高于相应对照组,且施药后同一时期比较发现,SQ-1浓度越大,02·-、H2O2、MDA生成量越多。5.三个品种处理组植株经SQ-1处理后5-15天,幼穗中POD活性一直升高;SOD、CAT活性呈现“高-低-高”的趋势;APX活性则呈现“低-高-低”的变化趋势。同一时期相比,施药后5-15天,随着SQ-1喷施浓度的增大,幼穗中POD逐渐增大,且处理组中POD活性高于对照组;而SOD、CAT、APX的活性逐渐减小,且处理组中酶活性始终低于对照组。6喷施SQ-1后,处理组幼穗中可溶性蛋白含量在5-10天逐渐升高,10-15天又开始降低,即呈现“低-高-低”的变化趋势。对同一时期喷施不同浓度SQ-1的可溶性蛋白含量进行分析可知,在三个品种中,喷施3-6 kg hm-2的SQ-1后都不同程度地降低了幼穗中可溶性蛋白的含量,且SQ-1浓度愈大,可溶性蛋白的含量降低地愈多。7.经SQ-1处理后不同时期,三个品种幼穗中脯氨酸含量一直升高,呈现“低-高”的变化趋势。同一时期相比,随着处理组浓度的增大,幼穗中脯氨酸含量逐渐减少,各处理组中脯氨酸含量都低于对照组。8.经SQ-1处理后不同时期,三个品种幼穗对照组中可溶性糖的含量一直持续降低,而处理组在第10天略有增加,随后又减少,变化不明显;同一时期相比,随着处理组浓度的增大,幼穗中可溶性糖含量逐渐减少。施药后对照组中淀粉含量不断积累,处理组中变化不明显;同一时期相比,随着处理组浓度的增大,幼穗中淀粉含量逐渐减少。幼穗中蔗糖与果糖变化趋势一致,施药后处理组与对照组中的变化趋势一致,第5天与第15天含量较低,第10天达到最高值,但对照组中含量变化较处理组大。同一时期相比,施药后第5天与第15天,随着处理组浓度的增大,幼穗中蔗糖与果糖含量逐渐增加,而第10天,随着处理组浓度的增大,含量逐渐减少。9.经SQ-1处理后5-15天,三个品种幼穗对照组中IAA含量一直上升,处理组幼穗中IAA含量呈现“低-高-低”的变化趋势,即第10天达到最高值;同一时期相比,随着处理组浓度的增大,幼穗中IAA含量逐渐减少,且各处理组中IAA含量都低于对照组。施药后5-15天对照组与处理组幼穗中ZR含量逐渐积累,呈现“低-高”的变化趋势;同一时期相比,随着处理组浓度的增大,幼穗中ZR含量逐渐减少,且各处理组中ZR含量都低于对照组。施药后5-15天对照组与处理组幼穗中GA3含量呈现“高-低-高”的变化趋势,第10天达到最低值;同一时期相比,随着处理组浓度的增大,幼穗中GA3量逐渐减少,且各处理组中GA3含量都低于对照组。施药后5-15天对照组与处理组幼穗中ABA含量呈现“低-高-低”的变化趋势,第10天达到最高值;同一时期相比,随着处理组浓度的增大,幼穗中ABA量逐渐增加,且各处理组中ABA含量都高于对照组。