【摘 要】
:
工业革命以后,由于人类活动加剧,能源需求大大增加,化石燃料的使用量显著增加。因此,大气中二氧化碳排放量的增长速度大大提升,最终导致大气中二氧化碳浓度显著增加,产生了明显的温室效应。介质阻挡放电(Dielectric Barrier Discharge,DBD)等离子体技术能够在注入较低能量时克服热力学势垒,将二氧化碳分解。此外,DBD等离子体技术还具有装置简易、成本低等优点,因而被广泛关注。本文分
论文部分内容阅读
工业革命以后,由于人类活动加剧,能源需求大大增加,化石燃料的使用量显著增加。因此,大气中二氧化碳排放量的增长速度大大提升,最终导致大气中二氧化碳浓度显著增加,产生了明显的温室效应。介质阻挡放电(Dielectric Barrier Discharge,DBD)等离子体技术能够在注入较低能量时克服热力学势垒,将二氧化碳分解。此外,DBD等离子体技术还具有装置简易、成本低等优点,因而被广泛关注。本文分别进行了大气压纳秒脉冲DBD与大气压交流DBD二氧化碳转化实验,分别在反应器中填充不同尺寸的玻璃小球与氧化锆小球,研究了脉冲峰值电压、交流电压、频率与二氧化碳气体流速对二氧化碳转化率、能量效率、放电功率、活性物种发射光谱强度的影响。主要内容如下:1.研究了大气压纳秒脉冲DBD放电的电流电压图像,二氧化碳转化率、能量效率、放电功率随脉冲峰值电压、填充玻璃小球直径的变化规律。当填充玻璃小球直径由3 mm增加到4 mm时,二氧化碳转化率、能量效率、放电功率均随之增加。仅填充石英棉时,相同电压条件下,放电功率小于填充玻璃小球的结果。实验中,最高的二氧化碳转化率为3.8%;在脉冲峰值电压26 kV,脉冲重复频率160 Hz,二氧化碳气体流速50 mL/min,填充直径4 mm玻璃小球条件下,能量效率达到最大,为0.79 mmol/kJ。填充介质小球直径较大时,二氧化碳转化率较高。2.研究了大气压交流DBD放电的电流电压图像,二氧化碳转化率、能量效率、放电功率随交流电压、频率、二氧化碳气体流速的变化规律。二氧化碳转化率随交流电压、频率的增加而增加,随二氧化碳气体流速的增加而下降。能量效率随交流电压的增加而增加,受频率的影响较小。放电功率随交流电压、频率的增加而增加,基本不受二氧化碳气体流速影响。实验中主要测量到的CO(B-A)与CO(b-a)的发射光谱强度均随交流电压、频率的增加而增加。实验中,在交流电压22 kV,频率10 kHz,二氧化碳气体流速40 mL/min,填充直径4 mm氧化锆小球条件下,二氧化碳转化率达到最大,为20.9%。填充介电常数较高的介质小球时,二氧化碳转化率较高。
其他文献
分子定向和取向是分子反应动力学的重要研究课题之一。随着现代激光技术的发展,研究人员可以利用各种激光技术控制分子的定向和取向。本文利用含时量子波包理论方法,研究了利用超短激光脉冲控制NaI分子的定向动力学。提出了利用周期量级太赫兹脉冲和半周期太赫兹脉冲控制NaI分子定向的理论方案。主要研究工作如下:(1)提出了利用周期量级太赫兹脉冲控制NaI分子定向的方案。采用含时量子波包方法精确求解包括转动和振动
作为碳元素的邻近元素,硼在元素周期表中是第一个具有p电子的元素,具有独特而复杂的特性,包括缺电子、较短的共价半径、容易形成多中心键等。因此,探索低维硼及硼基纳米材料的结构和物理化学性质,受到科学界的广泛关注。在纳米团簇中,寻找高稳定的硼基团簇并实现其宏量制备一直是实验和理论研究的热点。然而,作为一种缺电子元素,硼团簇很容易被氧化,在脱离真空时容易变得不稳定。而过渡金属元素由于具有丰富的d电子被认为
随着能源问题的日益加重,核能由于其高效,清洁等优点受到广泛关注。核反应堆安全性一直是关注的焦点,尤其是日本福岛核事故发生后,如何提高核反应堆的安全性能成为核能系统研究人员的努力方向。作为防止核燃料泄露的第一道屏障,包壳管的完整性显得尤为重要。然而,随着反应堆的运行,燃料和包壳管会发生化学相互作用,增加燃料泄露风险的同时还会影响燃料的使用效率。为了缓解燃料和包壳管的化学相互作用,在管内壁进行涂层是一
长期处于恶劣海洋环境中的系泊链环在风、浪、流的共同作用下,不仅会受到浮式平台往复运动产生的轴向拉伸载荷作用,还会受到平面外弯曲和扭转等复杂载荷作用。链环在某些关键位置的应力可能超出原有设计强度而发生破坏,导致系泊系统失效,进而使整个海洋平台的安全受到威胁。系泊链环生产过程的热处理工艺及试验载荷加载都会产生残余应力,进一步影响链环服役时的应力特性和安全性能。因此,在考虑残余应力的前提下,对链环进行不
天空偏振模式中包含偏振导航所需要的方位信息,对偏振导航的实现有重要作用。天空偏振模式是太阳光经过大气层时,受到大气模式、气体分子、气溶胶、云、地表、时间以及地理位置等各种内、外部因素共同作用下形成的,不同因素导致其存在一定差异,因此建立更加接近于实际大气的理论模型进行仿真分析并在实际环境下对天空偏振模式进行定量测试研究显得尤为重要。为研究不同因素对天空偏振模式的影响,分析实际大气环境下偏振导航的方
随着南极科考事业的蓬勃发展,高机动性的南极航空运输正在逐渐替代传统的海运运输成为各国首选的南极交通运输方式。同时随着北京和张家口共同获得2022年冬季奥林匹克运动会的举办权,冬奥会滑雪场和相关配套基础设施的建设工作也一直广受各界的关注。因此,南极机场跑道和滑雪场跑道等冰雪工程建设的发展,对于我国南极科考事业的发展和2022年北京冬季奥运会的顺利举办具有重要的战略意义。其中,压实积雪跑道的硬度测量所
海洋平台是开采海洋资源的基础设施,经过常年累月的服役后,平台容易出现部件老化、腐蚀甚至断裂等结构损伤。通过对海洋平台进行健康监测并在结构损伤进一步扩大前及时发现并预警,能够有效保障海洋平台结构和工作人员的安全。目前,针对海洋平台损伤的主流研究方法是在采集结构响应数据的基础上分析结构模态参数的变化以判断损伤的发生,其优势在于只需要对少量的数据进行分析,但容易受环境噪声的影响导致判断结果不准确,如果能
随着世界海洋开发技术的进步和开发范围的不断扩大,更加恶劣的开发环境意味着海洋工程结构所面临的波浪的非线性效应也更加显着,开发海洋资源所面临的挑战难度将会日益增大。本文基于势流理论建立了一个使用高阶边界元方法(HOBEM)的三维水槽时域数值模型,用以探究波浪-物体相互作用的非线性现象。该数值水槽模型通过四阶Runge-Kutta法实现自由水面与物面的时间步进过程,采用弹簧近似法剖分瞬时自由水面网格与
大气压非平衡等离子体射流以其在环境、生物医学等领域的独特应用优势,受到了国内外学者的广泛关注,近年来已成为大气压等离子体领域的一个重要研究方向。大气压等离子体射流源是一个多参数系统,电极结构、驱动电压类型、工作气体种类、传播环境等任何一个参数条件发生变化都会引起等离子体射流性质的改变,因此深入了解不同参数条件下等离子体射流的动理学特性,对于优化和控制大气压射流等离子体行为,使其满足不同的应用需求具
自旋电子学,是以电子的量子自由度(自旋)为主要研究对象,以凝聚态物质中的自旋输运现象为主要研究内容的一个新兴领域。1988年巨磁阻效应的发现被认为是自旋电子学的开端。M.N.Baibich等人把这种巨磁阻效应归因于通过Cr层和Fe层之间传导电子的自旋传输。由此衍生出的自旋电子器件如自旋阀、磁隧道结等也得到了蓬勃发展,被广泛应用于非易失性磁存储器,高精度传感器,生物感知探测等领域。虽然自旋电子学建立