不完整多视图聚类方法研究

来源 :广东工业大学 | 被引量 : 0次 | 上传用户:wanxueguan55
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于在划分无标签且含有缺失实例的多视图数据上具备优势,不完整多视图聚类吸引了越来越多的研究关注。虽然已取得很大进展,大多现有不完整多视图聚类方法仍存在至少一个以下缺陷:(1)无法同时开发数据样本之间跨视图的共同关系及原始数据特征表示的互补多视图信息;(2)忽略视图之间高阶的相互关系;(3)只能处理诸如只有两个视图等特殊视图不完整情况。针对这些问题,本文主要开展了以下两方面研究:(1)为了同时挖掘数据样本之间跨视图的共同关系、开发原始数据特征表示的互补多视图信息以及处理任意视图缺失的情况或含有负值的数据,本文提出了一种基于一致学习的不完整多视图聚类方法。该方法结合矩阵分解和索引矩阵来获得低维一致表示,以此从各个视图可用实例的原始特征表示中开发互补信息。此外,通过整合索引矩阵和中心化项到自表示学习中来获得一致相似度图,从而挖掘数据样本之间潜在的跨视图关系。该方法的关键是利用图拉普拉斯正则化把一致表示和相似度图耦合起来,使得一致表示的紧凑性和相似度图的准确性相互提高。在多个不完整多视图数据集上与若干现有方法进行对比实验,实验结果验证了该方法在不完整多视图聚类任务上的优越性。(2)大多现有不完整多视图聚类方法不能同时挖掘数据样本之间视图特定和跨视图的关系并捕获视图之间高阶的相互关系。针对该问题,本文提出了一种基于低秩张量的不完整多视图子空间聚类方法。该方法在子空间表示学习中引入低秩张量约束和中心化项,这不仅可以挖掘数据样本之间视图特定和跨视图的关系,还可以捕获视图之间高阶的相互关系并降低各个视图的冗余度。此外,通过逼近视图特定和跨视图子空间表示的内积,该方法设计了一个新颖模块来获得辨别力强的相似度图。该方法开发了一个基于增广拉格朗日交替方向最小化的优化算法来求解所提出的目标函数。在若干不完整多视图数据集上的实验结果验证了该方法的有效性和优势。综上所述,本文针对现有不完整多视图聚类方法存在的问题,提出了两种性能优异且应用灵活的方法,同时给出了相应模型的优化求解方法,并分析了所提出方法的时间复杂度、参数敏感度、收敛性等,而且在多个数据集上的实验验证了所提出方法的有效性和优势。
其他文献
随着智能家居概念不断深入人心,智能音箱和路由器作为家居设备在人们日常家居生活场景中扮演着至关重要的角色,但是在日常使用中音箱仅作为家庭影音的娱乐服务型终端存在,路由器作为服务终端用户也大多数是仅使用其发射出的无线信号进行上网,对其剩余资源是一种浪费,并且两者在家居场景是相互独立的个体。在本文中结合校企合作项目《新一代智能无线音箱系统的研发》,将家居场景中的音箱和路由器这两个相互独立的个体整合设计成
随着我国工业技术的发展,用电需求急剧增加,加快了我国电力技术的发展。在实际应用中传统变电技术存在着众多的问题,难以满足现代工业生产的需求。智能变电站以高集成度、高智能化、信息传输的高可靠性等特点,能实现系统各单元数据交互,提高数据共享性,在现代电力系统中应用的越来越多。本文以智能电站为研究对象,依据智能电站基本特征设计了百灵220KV智能电站。本文首先从基本概念、特征以及结构三个方面详细阐述了智能
对电子听诊器采集的肺音进行异常检测,即判断其中是否含有啰音,能够大幅提升呼吸系统疾病早期筛查的效率。但是,目前肺音异常检测还存在以下挑战:(1)标注样本少,正负样本不均衡。经过专业医生人工打标的样本少,且正常肺音数据量远大于异常肺音数据量,无法为检测模型参数的学习提供充足的监督信息;(2)肺音中往往包含大量的噪声,包括:心音、说话声等,使得检测模型容易出现过拟合问题。针对以上挑战,本文的主要工作包
工业产品质量在线实时视觉检测是智能制造的一项重要工序。目前主流的检测基于人工提取特征,然而这种方法维护成本高和系统迭代慢。另外,面对复杂检测场景,往往难以有良好效果。深度学习作为一种新型人工智能技术,在视觉任务上获得优异性能。但是,深度学习模型性能严重依赖大量带标签的样本数据。在视觉检测任务中,缺陷样本是少量,而且缺陷区域的标记是困难的,耗时的。解决此问题方法主要有:标记框和像素级标记。相比前者,
近年来,卷积神经网络成为人体姿态估计的主流方法,但是网络结构复杂,在提升精度的同时也带来了大量参数与运算量,难以支持在算力与存储能力受限的终端设备上的实时应用。因此,本文从模型设计的角度出发,以优化模型运算量与精度的平衡为导向,研究轻量且高效的人体姿态估计算法,并以此为基础实现针对健身场景的动作相似度分析系统。本文的主要工作包括:1.结合轻量级卷积神经网络的特点,对Simple Baseline网
进入21世纪后,中国的国力不断发展,人口素质不断提高,人们对工业产品的质量也提出了更高的要求,与此同时,中国的人口红利期已过,人力成本逐年递增,尤其受新冠疫情的影响,导致招工难的问题日益凸显,这对‘中国制造2025’提出了更高的要求,机器换人的政策势在必行。工业机器人作为智能制造的最终执行者,它的研发与推广是机器换人政策实行的重要一环。本文将在已有的并联机器人架构的基础上,针对以CR2032电池生
产品质量检测是工业生产制造过程中的重要环节。传统人工提取特征算法在换向器产品质量检测中存在各种不足,无法满足自动质检要求。为解决此问题,本文探索深度学习方法检测换向器侧面划痕缺陷和端面缺料缺陷,深度学习方法能够自动提取特征,其泛化能力强,期望比传统视觉算法有更好的检测稳定性与准确度。本文主要的工作如下:(1)为解决换向器侧面划痕多尺度检测和细小划痕检测两个问题,提出基于编码器-解码器结构的语义分割
为了解决交通拥堵和交通污染,大容量、高效、准时、安全的城市轨道交通(地铁,轻轨,有轨电车)已成为城市交通发展的最终解决方案。手动检查存在一系列重大问题,在地铁检查行业中,需要更多基于技术的便携式和小型检查设备。因此,本文设计了基于无人机采集图像的轨道缺陷检测系统,主要工作如下:在课题准备阶段,本文首先查询了当下四种主流的轨道缺陷主要检测方案;研究了现在普遍使用的地铁检测方案,深入地铁巡检一线了解现
出租车作为公共交通系统的重要补充,在改善出行服务,提升道路运力方面发挥着较为重要的作用。在实际生活中,由于人群活动复杂多样且各区域人口分布不均,这导致人群的出行需求在时间和空间分布上具有较强的随机性和波动性。出租车因无法及时感知人群出行需求,常常引起客运服务的区域性供需矛盾。如何合理分配城市中车辆运力资源,实现客运服务按需供给成为近年来研究的热点。针对人群出行的特点,本文提出一种基于组合神经网络的
随着工业智能化的不断推进和换向器产能需求的不断提高,过去非常低效率的人工检测传统方法和存在各种局限性的传统数字特征处理检测方法将逐步退出工业缺陷检测界的主要舞台。近些年来,卷积神经网络经过长足的发展,分类、检测、分割的各个领域上都有了突破性进展。越来越多的神经网络框架被应用到各类物品的表面缺陷检测任务中。应用在表面缺陷检测的目标检测框架常常可以划分为一阶检测器和二阶检测器。二阶检测器中经典的网络框