二维微极性流体方程角粘性极限

来源 :厦门大学 | 被引量 : 0次 | 上传用户:zz5616527
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要考虑了二维不可压缩微极性流体方程的柯西问题.我们利用关于角粘性系数的一致估计,证明了当角粘性趋于零(即γ→0)时的极限过程,并得到了收敛速度.  
其他文献
设X,Y是Banach空间,ε≥0,称f:X→Y是一个ε-等距,如果满足|‖ f(x)-f(y)‖-‖ x-y‖|≤ε,(V)x,y∈X。称f是稳定的,如果存在某个γ>0,以及某个T∈B(L(f),X),使得‖Tf(x)-x‖≤γε,(V)
偏微分方程数值解在计算数学的研究领域占有重要地位,有限差分是主要方法之一.对于半线性发展方程,一种离散方法是使用显式差分格式,计算量小,但条件稳定;另一种方法是使用隐式差
这篇论文考虑了某些奇异摄动方程解的存在性和相应临界值的估计.本文由4章组成.   第1章介绍了研究背景和我们的结果.   第2章考虑奇异摄动方程相应泛函的估计.假设f和
学位
本文研究了几类竞争Lotka-Volterra系统的动力学性态:如平衡点的存在性和稳定性,周期轨的存在性以及不变环面的存在性等;并讨论了各类分岔现象:如Hopf分岔,同宿分岔,倍周期分
学位
本文针对一类具有HollingⅣ功能性反应函数的捕食系统,应用微分方程稳定性和定性理论、重合度理论,证明了系统正平衡点全局稳定性,极限环的存在唯一性和周期解的存在性。主要内
非线性发展方程,就是以时间t为其一个独立变量的非线性偏微分方程。从数学以及物理,生物,力学,化学,材料科学等自然科学分支中提出的许多问题,最后都归结为一个非线性发展方
笛卡尔乘积是大规模网络拓扑结构设计的一种重要方法,它能够从较小的模块结构开始,逐级扩展为大型结构并继承了原始结构许多好的拓扑性质。完全图是图论中最基本的图,也是网络设
非线性约束广泛存在于控制系统中,其中饱和非线性就是一类较常见的非线性约束。在控制系统中加入饱和非线性因素会对系统的性能产生严重影响,甚至会导致系统不稳定。因此对饱