论文部分内容阅读
与传统结构陶瓷相比纤维增韧陶瓷基复合材料具有更高的抗冲击韧性和抗弯强度,是重要的国防装备新材料。由于纤维的增强作用,纤维增韧陶瓷基复合材料具有类似金属的断裂行为,对裂纹不敏感,是典型的高硬度、强韧性难加工新材料。磨削加工是纤维增韧陶瓷基复合材料的主导加工方法,目前国内外在此方面的研究还处于初期阶段,作为增韧相存在的连续纤维对材料去除的作用机制尚不明晰,导致磨削效率低下、加工损伤不易控制等问题亟待解决,严重制约国防装备能力的发展。本文以碳纤维增韧碳化硅陶瓷基复合材料为研究对象,研究增韧纤维/陶瓷界面细观力学行为与界面失效机制,建立纤维增韧陶瓷基复合材料本构模型,通过单颗粒刻划实验与磨削实验研究在磨粒干预条件下连续纤维对复合材料微观裂纹萌生、扩展及材料去除的作用机制,揭示纤维增韧陶瓷基复合材料磨削过程材料去除与新表面创成机理,优化磨削工艺与工艺参数,提高磨削效率、降低加工损伤。论文理论分析了陶瓷基复合材料制备过程中纤维/基体界面的物理、化学作用,研究了纤维/基体界面本构关系以及界面在载荷作用下的失效机制,同时建立了“纤维—界面—基体”的单胞物理分析模型。此外,通过陶瓷基复合材料单胞理论模型的分析,设计并制备了单向C/SiC模型复合材料并以此研究陶瓷基复合材料的磨削加工机理。上述工作为编织陶瓷基复合材料力学性能的研究提供了理论基础。在陶瓷基复合材料的界面力学性能测试方面,利用微/纳米力学测试技术,采用纳米压痕仪,开发了单纤维压出实验平台。通过单纤维压出实验,获得了C/SiC复合材料界面力学的两个重要参数:界面脱粘剪切应力(35±5 MPa)和界面摩擦剪切应力(10±1 MPa),并揭示了纤维压出过程中的界面破坏及裂纹传播规律。上述工作为复合材料界面力学分析及磨削机理的研究提供了重要的实验依据。在陶瓷基复合材料的微/纳米加工方面,利用微/纳米力学测试技术,采用纳米划入仪,对自行设计的模型复合材料进行刻划试验。通过试验揭示了单颗磨粒作用下的界面失效机制及微观材料去除机理。该研究为陶瓷基复合材料磨削机理及复合材料细观力学研究提供了理论基础。在陶瓷基复合材料磨削机理方面,利用金刚石砂轮,对模型复合材料进行磨削试验。试验揭示了纤维方向、磨削参数(磨削深度、进给速度、砂轮转速)对磨削过程中磨削力、表面粗糙度、表面微观特征的影响规律,探明了C/SiC的磨削加工材料去除机理。该机理的探明对陶瓷基复合材料优化磨削工艺与工艺参数,提高磨削效率、降低加工损伤具有重要意义。本文的研究成果不仅对完善磨削加工理论具有重要的科学价值,更对提升陶瓷基复合材料的加工性能,扩大陶瓷基复合材料的应用范围,增强国防装备能力具有重要的社会意义和经济价值。