【摘 要】
:
基于从简单到复杂的思想,人们已经成功制备出了可控的单光子、单离子、单原子等优美的体系,用于量子计算、量子模拟和精密测量等方面的研究,并且取得了长足的进步。囚禁单个冷分子,一直是人们的另一个梦想,它不仅可以适用于前面的应用,还可以用来研究确定性的少体动力学、可控的超冷化学反应等问题。虽然人们已经在光晶格的单个格点中制备出了单个分子,但是,仍然没有实现单个格点可分辨地操控和探测。在微型光阱中囚禁单分子
【机 构】
:
中国科学院大学(中国科学院武汉物理与数学研究所)
【出 处】
:
中国科学院大学(中国科学院精密测量科学与技术创新研究院)
论文部分内容阅读
基于从简单到复杂的思想,人们已经成功制备出了可控的单光子、单离子、单原子等优美的体系,用于量子计算、量子模拟和精密测量等方面的研究,并且取得了长足的进步。囚禁单个冷分子,一直是人们的另一个梦想,它不仅可以适用于前面的应用,还可以用来研究确定性的少体动力学、可控的超冷化学反应等问题。虽然人们已经在光晶格的单个格点中制备出了单个分子,但是,仍然没有实现单个格点可分辨地操控和探测。在微型光阱中囚禁单分子,可以很好地利用光阱的可扩展性和可编程控制的能力,解决单分子的可分辨地操控和探测的问题。2015年,我们小组实现了微型光阱中两个异核单原子碰撞动力学的观测,精确测量了超精细态依赖的非弹性碰撞速率。在此基础上,本文将进一步地从两个超冷的单原子出发,研究两原子的相互作用和碰撞过程,并相干合成单个冷分子。主要包括以下内容:1.设计实现了双组份铷原子的激光冷却、囚禁和操控实验系统我们设计实现了 87Rb和85Rb的激光冷却和囚禁的实验系统,实现了两团空间重合的双组份冷原子团的制备。搭建了一套束腰小于1 μm的强聚焦系统,用于单原子的囚禁,并将单个87Rb和85Rb原子分别囚禁在两个相距4 μm的微型光阱中,寿命约为7 s。用亚多普勒冷却技术,将两个原子都冷却到兰姆-迪克区,实现了强囚禁。并用光泵技术实现了两个原子的超精细能级的初始化,并用双光子受激拉曼跃迁或微波跃迁,实现了两个原子的超精细能级的相干操控。利用双光子跃迁,实现了单个87Rb原子的里德堡相干激发,为基于中性原子的量子信息打下了基础。测量了超精细态依赖的和超精细磁子能级依赖的两原子碰撞的动力学过程,为研究两个超冷原子间的相互作用和单分子制备打下了坚实的基础。2.实现了微型光阱中单个87Rb和85Rb原子运动基态的冷却我们将分别囚禁的87Rb和85Rb的两个单原子同时冷却到了各自势阱的基态,并且实现了单原子运动态的相干操控。冷却后的三个维度的谐振子量子数都小于0.1,原子处于三维基态的概率约为90%。我们分析了原子在光阱中的各种加热因素,并分析了边带冷却对于压制原子的热运动所带来的好处。在边带冷却之后,我们演示了单个原子运动态的高保真操控。3.提出并实现了87Rb和85Rb运动态高保真度的转移我们分析了两个对称光阱转移过程中的加热效应,并分析了光阱的不对称比例对基态原子转移过程的影响。为了高效地合成单个分子,需要实现两个原子的波函数在空间上的完美重叠。为此,我们提出并实现了量子态依赖的转移技术,来避免87Rb和85Rb两个原子在转移和重合过程中的加热。通过边带冷却和态依赖转移技术,我们最终使得两个原子波函数的重叠提高了三个量级。4.测量了 87Rb和85Rb原子不同超精细能级间的相互作用在获得了两个重合的超冷原子之后,我们用微波跃迁测量了 87Rb和85Rb原子不同超精细能级间的相互作用,并推测出了它们间的散射长度,误差约为2.6 nm,为预测合成分子所需的频率提供了基础。与多通道量子亏损理论相结合,我们揭示了一种在超冷原子碰撞过程中通常被忽略的效应——量子亏损的能量依赖性。5.首次在微型光阱中相干合成了单个冷分子我们借助于微型光阱的偏振梯度效应,用态依赖的微波跃迁实现了两个原子间的相对运动的操控,并观测到了量子化的运动模式。在此基础上,实现了单个87Rb85Rb冷分子的相干合成,观测到了从原子散射态到分子束缚态的相干拉比振荡,并操控了单分子的运动态。在测量阱中的单分子束缚能的基础上,推测出了自由空间的束缚能的准确值,并由此给出了不同超精细能级下的散射长度的精确值,误差小至20 pm以下。
其他文献
本文主要研究了高维非齐次标量守恒律Cauchy问题的全局光滑解以及Rie-mann问题的高维非自相似激波和稀疏波解、n维非齐次Burgers方程的具有两片初值的Riemann问题的n维非自相似激波和稀疏波解的相互作用、具有三片初值的二维非齐次Burgers方程的Riemann解中波的相互作用。第3章研究了n维非齐次标量守恒律Cauchy问题的全局光滑解,它的非齐次项是关于u和t的函数,初值是有界或
随着处在中红外波段的超短超强激光脉冲技术的发展,固体高次谐波逐渐成为国内外研究的热点。中红外激光的波长范围在2-5 μm,相较于半导体的带隙,中红外波段的激光的长波长,高强度,使得激光作用于半导体时,电离过程处于隧穿机制下。固体高次谐波的研究有着十分重要的意义:其一,因为固体高次谐波动力学时间尺度是在亚飞秒或者阿秒的量级,所以具有超短的时间分辨。固体谐波含有固体内部的超快电子动力学和晶格动力学的物
当强飞秒激光脉冲与透明介质(气体、液体和固体)相互作用时,由于各种线性和非线性光学效应的共同作用,激光脉冲在传播过程中会形成一条明亮的等离子体通道。与此同时,激光脉冲在时间和空间分布上达到相对稳定,这种现象被称之为飞秒激光成丝。由于飞秒激光成丝在众多领域,如大气远程探测、激光引雷、激光加工、超短脉冲产生、超快光谱技术等,都有着重要应用价值,近三十年来飞秒激光成丝一直是热门的前沿研究课题。然而,飞秒
实现对原子和离子的长期稳定囚禁,使其与外界环境隔离开来对于精密测量物理的研究和发展具有重要意义。近几十年来,分别通过使用射频场和光场,人们已经实现了对离子和原子的长期稳定囚禁。随着离子阱和激光冷却技术的发展,基于射频场囚禁单个离子的离子光频标也得以迅速发展。然而射频场不可避免的会引入微运动,这对于离子光频标的频率测量会造成很大的误差,因此人们希望寻找一个解决此问题的普适方法。2010年,德国的T.
超冷原子气体具有体系纯净、相互作用可控、自由度丰富等特点,是研究物质量子特性的理想体系。在超冷原子物理领域中,对超冷费米气体的研究也随着实验技术的不断进步而得到蓬勃发展。特别是近几年里相继有一系列新奇宏观量子现象在实验中得到观测并被研究,其中包括BEC-BCS间的渡越、具有标度不变性的膨胀行为、物质波孤子的形成等等。在不同的体系中这些现象都有所存在,有一部分还探究到了凝聚态物理、粒子物理和原子分子
氦原子是最简单的三体原子体系,其结构属性的高精度理论计算和跃迁光谱的精密测量在检验量子力学(QED)理论、确定基本物理常数、以及探索与核模型无关的核结构性质等方面起着重要的作用。例如,氦原子23P态的精细结构劈裂可以检验QED理论,而氦原子亚稳态413 nm幻零波长的高精度实验测量和理论计算相结合为检验QED理论提供了新途径。目前该幻零波长的理论和实验之间存在19 ppm的差异,这一差异的存在主要
本论文主要研究量子多体系统中的三类L2(质量)临界约束极小问题,具体包括极小元的存在性与非存在性、质量参数趋于临界值时极小元的渐近收敛行为等分析性质.全文共分四章:在第一章中,我们将概述三类质量临界约束极小问题的具体背景及其国内外的研究现状,引入一些相关的预备知识,并简单地介绍全文的主要结果.在第二章中,我们分析下述带陡峭位势的质量临界约束极小问题:eλ(N):= inf{u∈H1(Rd),‖u‖
Over the last few decades,quantum computing(QC)and quantum information processing(QIP)have exploded into a major field of physics,in terms of theory and experimentation extending towards a universal q
强激光场(~1013 W/cm2及以上)与原子分子相互作用时会产生一系列非微扰效应,例如高次谐波、阈上电离、非次序性双电离等。这些新现象进一步推动了阿秒物理学的发展和应用。例如利用高次谐波合成超短孤立阿秒脉冲,利用阈上电离谱特征探测电离解离动力学过程,以及通过非次序性双电离研究电子间相互关联作用等。强激光场与分子相互作用时,由于核在电子电离、复合及散射等多个过程中的重要影响,在很多情况下也需要考虑
储层岩心等多孔介质材料富含大量的油、气资源,其结构特性分析及内部流体运移规律研究对于储层的评价、开发至关重要。磁共振技术以其无损检测、可原位测量等优势广泛应用于岩心等材料的应用研究中。NMR/MRI方法以材料中流体内的核自旋为探针,可有效地获取材料的结构特性、流体含量及分布信息,从而为储层评价、了解采油过程、发展提高采油率的新方法提供了参考。由于固液两相磁化率差异引起的磁场梯度,高场下微孔内NMR