论文部分内容阅读
光学薄膜作为关键元件,支撑和确保了事实上几乎所有现代光学系统的各种成功应用,其中光学薄膜软件技术发挥过、也必将持续发挥着关键性的作用。论文围绕光学薄膜软件技术中特别具有实用价值的若干前沿或关键方向进行了细致的基础理论和应用技术研究,主要包括决定膜系设计软件计算速度的核心数学算法、面向成品率的鲁棒膜系设计方法、膜材料光学参数表征中测量数据误差处理技术和多层膜反向工程算法开发等内容。这些关键技术的研究,有利于提高国内光学薄膜软件的算法水平和性能指标,有助于软件技术在镀膜生产和薄膜测量中发挥更显著的实用价值,有助于解决工业生产中的成本控制和高端应用中的苛刻光谱质量等突出问题。论文的主要内容和贡献如下:(1)理论上建立了决定膜系设计软件计算速度和精度的核心数学模型——多层膜膜系光谱系数对膜层参数的一阶及二阶偏导数的解析计算模型,并得到了群延迟和群延迟色散的解析计算表达式。该解析模型,与矩阵法具有一致的物理背景,普遍适用于各向同性的均匀膜系统,形式上简明,数学上严格准确,编程上具有快速算法特性,应用上可用于薄膜光学的各个领域,可以作为薄膜工作者进行膜系分析、设计、表征和反向工程等技术的有力高阶工具。(2)基于上述膜系光谱系数偏导数解析模型,提出了膜系设计评价函数梯度和Hesse矩阵的准确计算模型和快速实现算法,证明了该解析算法相比于有限差分近似模型在计算精度、计算量和计算时间上的优势,有利于采用二阶最优化方法来加快膜系优化设计的速度,特别是对于提高大膜层数的膜系设计速度有实用价值。(3)运用上述膜系光谱系数偏导数解析模型,提出了一种新型的三棱锥形玻璃基片光学薄膜超声水听器,在不增加敏感膜膜层数的情况下,其最佳工作点的声光灵敏度较平板玻璃基片光学薄膜超声水听器提高了约一个量级,同时在光路调节、准直及稳定性,无扭曲测量时间和空间平均修正等方面体现了优势。(4)基于膜系误差灵敏度主动控制思想,提出了新的光学薄膜鲁棒设计方法,研究了其快速实现算法。纵向上与传统膜系设计,横向上与其他鲁棒膜系设计思想,在计算精度和计算时间上进行了对比研究,结果证实了该鲁棒膜系设计方法在计算精度、计算量和时间消耗上的优势。应用上,通过对斜入射消偏振单点减反膜、宽带减反膜、可见—红外双波段减反膜、中性分光膜和线性透射率滤光片等多类光学薄膜的鲁棒设计实验,验证了该鲁棒膜系设计方法的误差控制效果。(5)针对正交偏振激光器中应用的高性能偏振分光膜,对比研究了不同应用方案的误差响应特性,通过鲁棒设计实验研究,找到了该偏振分光膜膜系误差灵敏度的本质决定因素,提出了一种高鲁棒性的高性能激光偏振分光膜方案,其膜系结构简单,易于实际镀膜,为原方案镀膜过程中的低成品率和光谱质量退化问题提供了一种可能的解决方案。(6)基于光谱测量系统误差和随机误差的不同特性分析,提出了一种新的膜材料光学参数表征中测量数据误差处理技术。针对难以消除的测量系统误差,利用膜系光谱系数对膜层参数的一阶偏导数的零点位置和符号信息进行有利于反演计算的光谱测量数据筛选,以最小化测量系统误差对薄膜光学参数表征的误差传递作用。针对不可分离的测量随机误差,提出多次在实测光谱数据中人为注入随机噪声的思想,利用统计平均来减小甚至消除实测光谱数据中随机误差对薄膜光学参数表征不确定度的影响。将上述方法分别应用于基于光度法和椭偏法的薄膜表征实验中,以可复现的数值模拟实验探讨了其技术实施细节,以充分的数值实验数据和合理的理论解释支持和验证了这种误差处理技术的可靠性和应用价值。(7)对比研究了多层膜反向工程中各种局部优化方法在搜索能力、多解性处理、跳出局部极值的可能性、约束条件的影响及其施加策略等方面的性能,通过数值模拟实验给出了反向工程算法中理想的局部优化技术方案。探讨了多层膜反向工程中局部优化算法的有限适用性,提出了一种局部与全局一体化的多层膜反向工程算法,通过对12层锗基红外宽带减反膜、19层规整高反片和29层规整窄带滤光片等薄膜在各种人为模拟的镀膜厚度误差下的反向工程数值模拟实验,以可复现的数据验证了该一体化算法对多层膜反向工程具有良好的可靠性、较局部优化算法的优越性和对各类薄膜的普遍适用性。实验验证上,对15层红光滤光片、31层近红外高反膜、34层高精度激光偏振分光膜和一个未知理论设计结构的美国某高反膜片等已镀薄膜进行了多步骤离线反向工程实验分析,通过复现实测光谱曲线的特征信息(如波峰位置偏移、由系统或随机厚度误差造成的典型光谱特征),得到了多层膜中有物理意义的膜材料折射率色散关系、较可靠的膜系厚度及镀膜误差分布情况,验证了该局部与全局一体化的多层膜反向工程算法的可靠性。