论文部分内容阅读
高岭土是一种重要的工业应用原料,提高其品质是一个重要方向。针对于此,本课题以高岭土为原料,探索由片状高岭土制备管状高岭土的工艺;考察了制备高岭土纳米管的稳定性;对比分析了高岭土纳米管、热及酸处理改性的高岭土以及天然埃洛石纳米管的浆液粘性特点,初步分析了高岭土纳米管对其浆液粘度的影响。采用TEM/SEM,XRD,TG,FT-IR,BET等对样品表征,乌氏粘度计对低浓度样品粘度做测试,StressTech型平板流变仪对样品流变性做测试。研究发现:制备高岭土纳米管内外径分别约为(1225)nm和(2040)nm,长度(5001000)nm,长径比较大,产率较高,片层内部仍保持着高岭石Si∶Al=1∶1的二八面体结构,因片层被剥落卷曲,沿c轴方向无序化。该材料是管径均一的纳米管材料,具有较好的耐酸及热稳定性,2M盐酸处理后的样品形貌保持完好,经600℃恒温煅烧5h的样品变为无定型的偏高岭石结构,仍然保持管状形貌。其比表面积与天然埃洛石纳米管接近,经600℃煅烧后比表面积从40.25m2/g增加至70.56m2/g,具有较好的吸附性能,与高岭土原土相比孔容有大幅提高。高岭土经热、酸处理改性后粘度规律:煅烧高岭土粘度值均低于原土。表面羟基的多少是决定高岭土浆液粘度大小的关键因素,对煅烧高岭土酸处理可使已经脱除羟基的铝氧八面体内表面羟基重新生长出来,并可增加结构中的吸附水,随煅烧时间延长活性铝单元数目增多,再与盐酸反应样品粘度增大。同浓度的300℃煅烧9h后酸处理的样品粘度最大,当浓度为0.01g/ml时粘度值为1.4819cP。高岭土纳米管使浆液的触变性变大,固含量为12%(w/w)的高岭土纳米管浆液在低剪切速率下粘度值为6.18×102Pa·s,随剪切速率增大,粘度降低,在剪切速率500s-1下粘度值为7.28×10-2Pa·s,呈剪切稀化现象,表现为假塑性流体。在低剪切速率下高岭土纳米管浆液粘度值大于原土粘度值2.15×10-1Pa·s;在剪切速率为500s-1高岭土纳米管浆液粘度值大于原土粘度值6.69×10-3Pa·s。高岭土样品比表面积越大,颗粒之间异性电荷相互吸引力就越大。制备高岭土纳米管比表面积较大、长径比较大,呈束状排列,可以形成类似“胶束”状牢固的絮凝团,有纤维增塑增强功能,使分散体系的粘度增加。粘度测试结果表明浓度为0.01g/ml的浆液粘度大小顺序为:50%高岭土纳米管+50%原土的粘度值6.7584cP>经过热、酸处理改性的高岭土粘度最大值1.4819cP>高岭土原土的粘度值1.3354cP>埃洛石纳米管的粘度值1.1944cP。