【摘 要】
:
化石燃料的大量燃烧引起的环境问题已经不容忽视,清洁能源氢气的使用成为有效解决的办法。光电化学(PEC)分解水制氢是最具发展前景的制氢策略之一。在整个水分解体系中,光电极的设计与开发是优化光能转化为氢能的关键环节。在众多的金属氧化物半导体中,单斜相的BiVO4具有良好的光电化学稳定性、无毒、适当的禁带宽度并且在可见光范围内有较强吸收等优点,近年来引起了广泛的关注。但是,在实际的研究中BiVO4的光电
论文部分内容阅读
化石燃料的大量燃烧引起的环境问题已经不容忽视,清洁能源氢气的使用成为有效解决的办法。光电化学(PEC)分解水制氢是最具发展前景的制氢策略之一。在整个水分解体系中,光电极的设计与开发是优化光能转化为氢能的关键环节。在众多的金属氧化物半导体中,单斜相的BiVO4具有良好的光电化学稳定性、无毒、适当的禁带宽度并且在可见光范围内有较强吸收等优点,近年来引起了广泛的关注。但是,在实际的研究中BiVO4的光电效率远远低于理论极限效率,材料内部强烈的光生电子-空穴复合倾向、较低的载流子迁移效率、缓慢的界面氧化动力学等问题限制了其对水的分解效率。因此,本论文将针对这些问题,从不同的角度改善BiVO4光电性能。探讨BiVO4材料光电催化制氢的机理和相应的调控规律,为高效稳定光电催化材料的设计与制备及应用提供理论基础和实验依据。第一项工作我们通过在BiVO4的合成过程中添加Bi2S3量子点引入氧空位,成功制备了具有有缺陷的Vo-BiVO4/FeOOH光电阳极。系统地研究了Vo-BiVO4/FeOOH的相、组成和形貌。在AM 1.5 G的光照下,Vo-BiVO4/FeOOH光阳极在1.23 V vs.可逆氢电极(RHE)下的光电流密度为4.71 mA cm-2,表现出良好的光电化学性能,是原始BiVO4的3.1倍。实验和理论计算测量证实,这种优异的PEC性能是由于氧空位和FeOOH催化剂的存在,显著提高了电荷分离。此外,FeOOH催化剂可以显著提高Vo-BiVO4/FeOOH的稳定性,且在11 h的持续光照后不会下降,表现出能够长时间高效运作的性能。第二项工作提出了一种简单的改性方法,通过在硼酸钾溶液处理后的BiVO4上沉积NiFeOx纳米层来制备高性能的光阳极。所得Ni FeOx/B/BiVO4光阳极在AM 1.5 G的光照下,1.23 V vs.RHE的电压处,光电流密度为5.25 mA cm-2,是纯BiVO4(1.6 mA cm-2)的3倍以上,也优于B/BiVO4(3.35 mA cm-2)。研究证实,PEC性能的增强归因于BiVO4的表面电荷重组得到了抑制、加速B/BiVO4空穴向NiFeOx催化位点的转移。此外,NiFeOx/B/BiVO4光阳极在不添加其他物质的硼酸钾电解液中获得持续了长时间的光稳定性。这项研究为制造低成本、高性能的太阳能水分解催化剂提供了一条可行的途径。
其他文献
作为我国经济发展的重要载体,当下的产业园正经受世界产业格局重构以及自身产业升级的双重压力,这些压力使得产业园的发展面临转型困境,为缓解发展困境,产城融合逐渐成为产业园的发展趋势,同时,产业园区差异化的发展特征使得产业园区产城融合具有差异化的发展需求。在此背景下,本文旨在通过科学评价产业园的产城融合探究产业园产城融合的差异化特征,并针对不同类型的产业园提出不同的产城融合空间发展策略,力求全面促进产业
实际工程系统几乎都是非线性系统,因此研究非线性系统具有很大的意义。Takagi-Sugeno(T-S)模糊模型作为一种有效的近似非线性的方法,已经被广泛应用到了实际工业中。随着现代工业系统的规模和复杂化程度日益增长,在工作过程中故障总是不可避免地发生,甚至会严重影响系统的性能。同时,人们对系统安全性和可靠性的要求越来越高。因此,故障估计技术已经得到了广泛地关注。而且异步隶属度函数情况下的T-S模型
中国古代对植物胶的广泛使用,涉及到日用生活的方方面面,是古人对植物认识与应用的深入和拓展。事实上,在浩若烟海的中国古籍文献中,就记载了不少与植物胶相关的文字、图案及应用的资料,但稍感遗憾的是,到目前为止,学界尚无人对这些资料做过系统的整理、分析和研究。有鉴于此,本论文将从文献学、科技史和民族学的角度,对古籍文献所载植物胶(有关动物胶的研究待日后进行)资料尝试做较系统地整理、分析和研究,以弥补学界在
目标跟踪一直以来都是计算机视觉领域中的关键问题,在视频检索、无人驾驶、智能监控系统、工业机器人等领域发挥着重要的作用。近年来,随着计算机硬件技术的不断完善以及人工智能领域的飞速发展,运动目标跟踪问题得到了越来越多的关注。虽然目标跟踪的算法有很多,但是在复杂条件下实现准确的跟踪这一问题并未得到很好的解决。核相关滤波算法(Kernel Correlation Filtering,KCF)在2014年被
车牌识别系统由于其便利性和识别准确度,在现实生活中被广泛使用。随着深度学习的快速发展,车牌识别系统一般都采用深度神经网络,车牌识别的速度和准确度得到了极大的提高。然而,近几年研究人员发现,虽然深度神经网络的识别效果很好,但却非常脆弱,深度神经网络很容易被精心构造的对抗样本攻击,从而导致车牌识别系统出错。本文研究基于深度神经网络构造的车牌识别系统的安全性,通过攻防技术的研究与实现,希望提升车牌识别系
相变储能材料(phase change materials,PCM)是一种在材料所处的环境温度变化时通过改变自身相态来吸收或释放大量潜热使其自身温度基本维持在较窄范围内的功能性材料,因其成本低、热效率高、可重复利用及高储能等优点在智能纺织领域被广泛使用。将相变材料添加到纤维中制得储能调温纤维,它能够根据外界温度的变化自动吸收或释放热量来减少皮肤表面的温度波动,从而保证人体的舒适感。在众多的固-固相
随着我国经济和工业的快速发展,办公建筑,工业建筑等非住宅建筑大规模落地。非住宅建筑因其特殊性导致的室内环境问题成为了人们关注的焦点。例如,办公建筑由于人员密度大导致室内CO2浓度过高,工业建筑在生产过程中产生的颗粒物浓度过高,无不影响人们的身心健康和工作效率。为解决室内环境污染问题,采取的主要方式是机械通风,然而当前机械通风系统大多效率低、能耗大。如何提高机械通风效率对改善室内空气质量和建筑节能具
水环境保护是当前人类社会广泛关注的一个问题。但自有统计以来,我国总污水排放量达到了1.32×1012 m3,而直接排放的污水有6.12×1011 m3,分别接近我国水资源总量的二分之一和四分之一,足以可见我国的水体污染严重程度。工业革命后有机化合物大量产生、使用和排放,进一步加剧了生态环境的污染。这些化合物容易累积,难以去除,严重威胁地球水生态和生物安全。由于传统物理和生物废水处理方法的局限性,一
疲劳破坏是工程中常见的破坏,尤其是在汽车,航天,船舶等行业更为常见,针对以上构件进行疲劳分析至关重要,这些构件往往采用焊接的方式连接节点,在疲劳荷载的作用下,构件的焊缝处容易出现疲劳破坏。焊缝中存在的残余应力会降低构件的振动疲劳寿命和构件的安全性能。对比带不同的焊接残余应力的试件,可以研究各试件焊缝区在振动疲劳过程中的应变变化,分析焊接残余应力对带焊缝试件疲劳寿命的影响,对提高我国工业技术水平具有
有机发光二极管(OLED)被广泛认为是高效的下一代显示和照明技术。科研工作者做了大量的研究工作来提高器件的亮度和发光效率,为了减少效率下降,广泛研究了器件工艺的优化和分子结构的修饰。材料的设计方面,提升其发光性能的办法一种是通过引入空间位阻基团以减少分子间堆积来减弱分子聚集引起的淬灭;另一种方法是增加有效发光中心,构建多核环金属化配合物,特别是双核铂(Ⅱ)配合物。双核铂(Ⅱ)配合物由于其非平面刚性