冷原子最优化非绝热操控的若干问题研究

来源 :上海大学 | 被引量 : 0次 | 上传用户:bood
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着冷原子及其在精密测量、量子传感、原子干涉、量子模拟等领域中的应用不断发展,快速且高保真的量子态操控及其应用已成为当前物理学中的研究热点。众所周知,量子绝热过程,即演化足够缓慢从而体系的波函数(含时哈密顿量的薛定谔方程的解)将沿着其瞬时本征态演化,是量子态制备及操控的主要方法,在当前原子冷却、离子转移、绝热量子计算等方向发挥着极其重要的作用。然而,由于其过程耗时长,易受退相干、噪声、微扰等因素的影响,导致量子计算或者操控的精度降低,甚至是重复实验无法实现。为此,人们旨在加快量子绝热慢过程、实现量子态的精准操控或制备,并于近年来提出“量子绝热捷径技术”的概念。本博士论文旨在基于冷原子体系,研究量子绝热捷径技术及其优化方法,实现内态及冷原子的快速、精准的量子操控,取得的成果如下:一、由经典力学的运动方程出发,通过简单的方法设计非简谐势阱中原子质心的运动路径,从而直接反设计出势阱的快速转移路径以及针对剩余能量和鲁棒性优化的方案。二、由量子不变量出发,并结合含时微扰理论及最优化控制理论,反设计出非简谐能量最小化的冷原子快速转移轨迹。三、基于二能级体系的反设计方法,研究单个自旋、相互独立的不同自旋、相互作用的双自旋及多自旋的同时操控,实现快速、精准、稳定的叠加态或纠缠态的制备,进而可针对耗散或者系统噪声进行优化。四、针对原子转移、冷却和自旋操控中量子绝热捷径技术的设计和比较,揭示了反设计方法同样可以逼近最优化解,并具有简单、易操作的特点。
其他文献
论文主要从平方本征函数对称约束角度考察了半离散Kadomtsev-Petviashvili(D2△KP)方程族,半离散修正Kadomtsev-Petviashvili(D2△mKP)方程族与其他经典半离散(1+1)维可积系统的约化,包括Ragnisco-Tu(RT),Volterra和相对论Toda(RTL)方程族。我们首先考察了RT谱问题,RT谱问题是Ablowitz-Kaup-Newell-S
分数阶微积分已经成为科学与工程中一个新的研究领域。研究发现,分数阶微积分理论可以更充分地描述很多物理现象。与经典微积分相比,分数阶微积分具有“记忆”、“长距离相互作用”、和“遗传”的特性,这是分数阶微积分的主要优点。分数阶动力学是分数阶微积分的重要研究课题。研究人员和科学家对用分数阶导数描述分数阶动力行为的两个方面的内容感兴趣:一方面是理论分析,解的存在性和唯一性,解的周期性,以及分数阶动力学的性
本论文的研究内容属于赋值理论与Orlicz-Brunn-Minkowski理论.赋值理论是凸几何的核心问题之一.Orlicz-Brunn-Minkowski理论起源于Lutwak,Yang,和Zhang在2010年的工作.本文主要致力于该理论中Blaschke-Minkowski同态的Orlicz-Brunn-Minkowski不等式及相关极值问题的研究.本论文的研究工作可以分为四个方面:在第二章
物理上分数阶拉普拉斯算子被称为分数阶扩散通量,用于刻画列维飞行下粒子长距跳跃的反常扩散过程,它已经成为近十年来分数阶偏微分方程的研究热点.目前关于这类算子的数值方法有两个重要挑战:处理超奇异核和求解无界区域下的积分.因此本文主要研究如下几个方面的课题:1.对分数阶拉普拉斯算子采用Caffarelli-Silvestre延拓技巧,将非局部问题局部化,构造有限元格式并考虑相应的稳定性和误差估计;2.针
自上世纪七十年代量子色动力学(QCD)被提出以来,其在描述强相互作用方面取得了巨大的成功。QCD有三个基本性质,即夸克禁闭、渐近自由和手征对称性自发破缺。在高能区域,用微扰理论可以对强相互作用进行精确求解,然而在中低能区域时,非微扰作用明显,微扰理论失效。为了解决这个问题,必须采用非微扰的方法求解。处理非微扰效应的方法有很多,譬如格点QCD理论、QCD求和规则和唯象夸克模型。格点QCD是在分立的格
量子色动力学(QCD)是研究强相互作用的基本理论,原则上该理论应该可以描述强子结构以及处理强子的动力学问题,然而目前QCD理论与强子之间的联系还不是很清楚,人们只能通过研究强子质量、产生和衰变的各种唯象模型来理解强子共振态。其中具有QCD精神的组分夸克模型在研究强子谱和衰变的过程中,取得了很大的成功,也非常具有吸引力。本文在组分夸克模型的框架下,研究重子结构和动力学性质。重子的强衰变是研究重子结构
得益于长程无序、短程有序的无定形结构,非晶合金表现出超高强度、优异的耐腐蚀性、优良的导电性、玻璃转变温度附近超塑性的特点,因而成为制作微型超精密器件及其磨具的前景材料。非晶合金表面损伤行为直接制约着这些工件的使用效果及寿命。目前非晶合金表面损伤行为的研究比较分散,本研究针对这一现象采用多样化的实验手段(车削、纳米划痕、微观压缩)系统深入的研究非晶合金在表面损伤过程中的行为特点。研究了超精密切削时,
高的临界电流密度和小的磁弛豫仍然是高温超导实际应用的主要挑战,目前,通过超导的结构非均匀性来提高涡旋钉扎进而改善临界电流密度(Jc)的方法有:化学掺杂、高能离子辐照或注入、非超导二次相的引入等。通过化学掺杂可增加磁通钉扎中心密度进而实现Jc的提高或者诱导超导性能的产生,高能离子辐照同样是引入点状或柱状缺陷等来增加钉扎中心密度。但是,过量的掺杂或者高剂量的辐照也在破坏样品的超导电性,降低超导临界转变
光正交频分复用(O-OFDM)技术具有高频率效率、极强的色度色散(CD)和偏振模色散(PMD)容忍性、卓越的高阶调制扩展能力等优势。基于O-OFDM技术的正交频分复用无源光网络(OFDM-PON)由于良好的继承了 O-OFDM技术的优点,同时可以灵活地为用户提供各种的业务且实现成本较低,已成为了下一代光接入网高速率(40或100Gb/s)研究阶段NG-PON2的重要备选方案。本文主要分析和研究了
随着计算机视觉技术的发展,获取高质量深度图的需求越来越迫切。总的来说,深度图获取方法分为两大类:被动式获取和主动式获取。被动式获取方法通常基于立体匹配算法,逐像素点计算匹配代价导致这类算法复杂度较高。相比于立体匹配算法的固有缺陷,使用深度相机可以获取更加稳定的深度图,尤其是在低纹理区域。然而,主动式获取的深度图往往分辨率较低或有相当数量的空洞。因此,需要对这类深度图做进一步增强。因为低质量的深度图