论文部分内容阅读
随着多媒体信息的广泛应用,并在数据库系统和计算机视觉两大研究领域的共同推动下,图像检索技术己逐渐成为一个非常活跃的研究领域。如何有效地对这些图像进行分析、存储和检索是一个亟待解决的问题。基于内容的图像检索技术能有效的解决这一问题,成为研究的热点。基于内容的图像检索(CBIR)不同于传统的基于文本的图像检索,它实际上是一种模糊查询技术,通过对图像提取一定的特征,找出在特征空间中与查询要求接近的图像,从而实现在图像数据库中自动地、智能地检索、查询和管理图像。在CBIR系统中,特征的提取和匹配算法是决定图像检索结果的关键。在已经存在的颜色特征,纹理特征,形状特征等几种特征提取方法中,由于纹理特征能够描述图像的平滑,稀疏,规则性等特性,因此本文决定采用纹理特征作为图像检索的依据。首先,介绍了国内外基于内容的图像检索系统的研究现状,从基于内容的图像检索系统的基本原理入手,论述了基于内容的图像检索系统的通用框架、关键技术、检索特点以及应用领域。其次,描述了纹理和纹理特征,介绍了几种常用的纹理分析方法,有灰度直方图、边缘方向直方图、空间灰度共生矩阵、Tamura纹理特征、Gabor滤波器和Gabor小波以及图像纹理谱分析方法,本文在传统的纹理特征提取方法的基础上,利用Gabor小波变换在数字图像中局部区域的频率,方向信息的优异性能,和共生矩阵对图像的整体区域有着较好的处理效果的特点,尝试了结合灰度共生矩阵和Gabor滤波器来提取纹理特征的方法,并对提取的特征进行高斯归一化处理。另外,在图像相似性度量方面,阐述了几何矩阵模型和集合理论模型,给出了两种多特征组合的相似性度量结构,以及相似性度量的方法。同时介绍了在基于内容的图像检索技术中相关性反馈技术。最后,本文设计了一个基于纹理特征的图像检索原型系统,并对系统的各个模块及其功能进行了介绍,对本文提出的检索技术进行了仿真实验,给出了实验结果,并用排序平价法和平均检索率对算法进行了评价。