304奥氏体不锈钢低周疲劳及疲劳裂纹扩展规律研究

来源 :江苏理工学院 | 被引量 : 0次 | 上传用户:yjun198
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
低周疲劳失效是压力容器的重要破坏形式之一。在循环载荷作用下,压力容器的局部高应力区会出现微裂纹,随着载荷作用微裂纹不断扩展,形成宏观疲劳裂纹,从而导致容器发生疲劳失效。为了保障承压设备的安全可靠性,需要对材料的低周疲劳性能及疲劳裂纹扩展规律进行系统研究。本文选择压力容器常用材料304奥氏体不锈钢为研究对象,通过低周疲劳试验研究其低周疲劳性能、寿命行为;通过疲劳裂纹扩展试验,并结合数字图像相关法(Digital Image Correlation,简称DIC)与有限元分析方法,研究其疲劳裂纹扩展规律和裂纹尖端塑性区,为压力容器疲劳设计与寿命预测提供试验数据与分析方法。本文的主要工作如下:(1)本文对304奥氏体不锈钢进行低周疲劳试验,通过分析循环应力响应、循环应力-应变行为、循环应力-应变滞回曲线获得低周疲劳性能。通过应力、应变和应变能密度等参量建立了304奥氏体不锈钢的疲劳寿命模型,并对比分析了模型的适用性,结果表明,三参数幂函数能量法和基于塑性应变能的寿命方程具有更好的预测精度。(2)对304奥氏体不锈钢进行了疲劳试验裂纹扩展试验,通过DIC分析获得了裂纹尖端循环塑性区应变分布,结合裂纹尖端应力-应变场计算得到裂纹尖端循环塑性区应力分布,计算得到裂纹尖端循环塑性区内塑性应变能,并与疲劳裂纹扩展速率建立联系。结果指出:裂纹尖端应力-应变关系符合在低周疲劳下的应力-应变公式;裂纹尖端循环塑性区内的塑性应变能与疲劳裂纹扩展速率之间存在非线性关系,并建立基于裂纹尖端塑性应变能的疲劳裂纹扩展速率模型。(3)通过有限元分析对304奥氏体不锈钢在循环载荷下的疲劳裂纹扩展数值模拟,得到裂纹尖端应力-应变分布和循环塑性区内总应变能,并将有限元分析结果与DIC分析对比验证,结果表明:通过有限元分析得到的裂纹尖端位移、应变场与DIC观测结果基本一致,为裂纹尖端应变场以及循环塑性区的研究的提供了有效的方法;通过对裂纹尖端循环塑性区应变能的分析,得到与疲劳裂纹扩展速率之间的关系,并建立基于裂纹尖端应变能的疲劳裂纹扩展速率模型。(4)结合裂纹尖端应力-应变场与低周疲劳性能,建立了304奥氏体不锈钢疲劳裂纹扩展速率预测模型,并与Paris公式和疲劳裂纹扩展试验数据对比分析,结果表明:基于裂纹尖端应力-应变场与Manson-Coffin公式建立的疲劳裂纹扩展预测模型,在裂纹萌生阶段、稳定扩展阶段和快速扩展阶段皆具有较高的预测精度与可靠性,能够准确的表征304奥氏体不锈钢疲劳裂纹扩展行为。
其他文献
相比集中式驱动电动汽车,分布式驱动电动汽车因具有结构布置灵活、乘员舱空间较大、传动效率高、控制灵活等诸多优点,越来越受到人们的关注。一次充电续航里程短为如今各类电动汽车发展的限制因素,对电动汽车驱动系统的能量利用效率(能效)进行优化是解决该问题的有效途径之一。为了优化电动汽车行驶时的整车能效,延长一次充电续航里程,以分布式驱动电动汽车为研究对象,设计了基于能效的转矩优化分配策略。针对车辆行驶工况的
置换人工心脏瓣膜是治疗心脏瓣膜疾病的常用方法,其中人工机械瓣膜以其卓越的耐久性成为临床上使用最多的人工瓣膜。热解碳作为目前机械瓣瓣叶的首选材料,植入人体后长期与血液接触,患者会出现凝血和血栓等并发症,因此如何提高热解碳的抗凝血性能、减少血栓发生率是当前研究的热点。本文采用纳秒激光在热解碳表面制备平行光栅和微柱阵列结构,通过优化激光参数并结合硅烷化处理制备超疏水热解碳表面,通过血小板粘附、动态凝血、
碳纤维复合材料(CFRP)的宏细观一体化设计是一种综合考虑结构优化与材料铺层优化来提高CFRP结构件性能的优化设计方法。针对CFRP一体化设计过程中由于设计变量较多导致收敛慢的问题,本文提出一种基于变量分层CFRP件结构/材料/功能一体化设计方法。该方法将一体化设计分为系统层面与子层面,子层面包括结构层面与材料层面,结构件的截面轮廓控制节点及其权因子作为结构层面的局部变量进行NURBS宏观结构优化
汽车的迅速普及不仅推动了社会的发展,改善了人们的生活水平,同时也带来了大量的环境与交通问题。智能汽车作为未来汽车产业发展方向,是解决交通拥堵问题的有效手段之一。智能车辆的横向控制作为运动控制的核心技术之一,主要是通过控制转向系统实现对目标轨迹的横向跟踪。本文研究内容将围绕着智能车辆的轨迹跟踪控制方向展开。在研究过程中,首先针对传统最优预瞄控制理论的轨迹跟踪控制方法进行研究。在横摆角速度不变的假设下
分布式驱动电动汽车因其独特的底盘布置形式和底盘构造拥有巨大的控制优势,但随着车辆执行器的不断增多,执行器失效对车辆的安全威胁日益增大,为提高车辆的行驶稳定性和安全性,对分布式驱动电动汽车驱动电机失效下的稳定性控制问题展开相关研究。针对分布式驱动电动汽车执行器未失效状态下的稳定性控制问题,提出了一种分层架构下的稳定性控制策略。在上层控制器中,基于滑模控制算法对车身姿态进行跟踪,获得了车辆行驶所需的期
相比于传统汽车,分布式驱动电动汽车具有车轮可独立控制、响应速度快等优势,如今备受关注。然而,在车辆行驶过程中可能会受到诸如侧风之类的外部扰动,且由于系统复杂性越来越大,执行器和传感器故障的概率也越来越高。这对车辆稳定性造成严重的影响,危及车辆的行驶安全性。本文针对车辆系统的鲁棒容错控制问题,并考虑车辆的队列保持和轨迹跟踪问题进行了控制方法的研究,提出了基于模糊PID的车辆干扰抑制方法、基于自适应B
化石能源的过度使用所引起的能源与环境危机严重影响了人类社会的可持续发展,太阳能、风能、潮汐能等清洁可再生能源存在间歇性和随机性的特点,电化学储能因其具有方便、高效等优点而被认为是一种较理想的储能方式。铅酸电池能量密度低且存在重金属污染的问题,镍氢电池能量密度有限且存在记忆效应,锂离子电池因其寿命长、能量密度高、循环性能稳定和自放电效应低等优点发展迅速。作为锂离子电池负极材料而被广泛研究的钼基金属硫
公路运输作为应用最广泛的运输方式,常用于运输一些危险和有毒的液体货物,而液罐车则是该类货物的主要运输载体。由于液体的流动特性以及液体货物与罐体壁面的流固耦合作用,罐内液体自由液面形状会一直变化,使得液体货物质心发生横向偏移,进而导致液罐车安全事故频发。本文以提高液罐车横向稳定性为研究目标,设计了质心主动纠正偏移装置以实现液罐车主动减晃。此外,基于流固耦合机理,以罐内液体晃动为切入点进行了以下工作:
人类社会发展过程中对自然资源和能源的无节制、无计划的利用不可避免的造成传统材料和能源的逐渐枯竭。因此,提高材料的使用寿命、节能以及对废弃物进行资源化利用是实现人类社会可持续发展的重要保证。本论文制备了铸造粉尘/氯氧镁复合材料和两种提高氯氧镁水泥及其复合材料耐水性能的涂层,实现了氯氧镁复合材料工业废弃物利用、耐久和热反射等功能。本论文的主要研究内容如下:(1)铸造粉尘/氯氧镁水泥复合材料表面超疏水涂
为了解决环境污染和能源危机等问题,能源转换和储存装置引起了人们的极大关注,特别是能源存储装置,如何将有限的能源进行存储是当下亟需解决的问题。超级电容器是一种新型储能装置,它具有充放电过程快、功率密度大、可逆性好等优点,受到广泛关注。电极材料是超电容性能优良与否的关键,钴基化合物具有化学稳定性好、导电性能好的特点,但把它作为超级电容器电极材料时依然存在比表面积较小、活性位点较少等问题,限制了它的实际