基于梯度增强的微机器人操作电磁驱动系统研究

来源 :江南大学 | 被引量 : 0次 | 上传用户:henrychan168
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,微纳技术发展迅速,使得微机器人已经广泛应用于血栓疏通、靶向药物输送、近距离放射治疗和热疗等医学生物领域,体现出革命性的应用前景。此外,磁场驱动技术具有无损伤、兼容性强以及无线调控等特性,广泛应用于微机器人的驱动控制中,所以开展复杂环境中磁场驱动技术的研究具有重要意义。而现有的磁场驱动系统存在磁场梯度小、工作空间小等缺点,同时在复杂环境中微机器人动/静态障碍物避障的一系列难题亟待解决。为了解决好以上难题,本文开发了一套梯度增强的微机器人操作电磁驱动系统,并提出微机器人在复杂环境中对动/静态障碍物的自动避障策略。主要创新工作如下:(1)针对现有磁场驱动系统在复杂环境中磁场梯度小、工作空间小等问题,建立梯度增强的微机器人磁场驱动模型。首先建立铁芯末端模型并设计末端形状,利用有限元法优化铁芯线圈参数以达到磁感应强度、磁场梯度、磁场均匀性和工作空间等系统指标要求。然后分析梯度磁场驱动原理并构建铁芯线圈梯度增强磁场模型。接着对微机器人进行设计并对微机器人进行动力学建模。最后对梯度增强的微机器人磁场驱动系统磁场分析和热场分析分别验证梯度增强的磁场驱动系统在磁感应强度和磁场梯度方面的提升效果以及驱动优化的有效性。(2)建立梯度增强的微机器人磁场驱动系统,开展微机器人磁场驱动闭环控制系统实验。首先对梯度增强的微机器人磁场驱动系统实验平台进行设计,设置实验环境。然后通过微机器人沿正方形和Z形路径跟随闭环控制实验验证了磁场驱动系统能够在不同环境下对微机器人进行位置闭环控制。最后通过不同粘度的硅油环境下微机器人沿不同路径跟随实验验证了磁驱系统中的最快速度与线圈电流的线性关系。(3)提出微机器人在复杂环境中对动/静态障碍物的自动避障策略,开展微机器人对动/静态障碍物自动避障的仿真和实验。首先对传统RRT算法和传统人工势场算法(APF)算法进行改进,提出改进RRT和APF算法的融合避障算法。然后分别对改进RRT算法和改进APF算法进行仿真分析,验证了改进RRT算法在安全性和路径的提升以及改进APF算法在局部最优解问题的有效性。最后对实验环境设置并对模拟血管边缘进行匹配,通过对微机器人在复杂环境中不同运动方式的动/静态障碍物自动避障实验验证微机器人在复杂环境中对动/静态障碍物有效避障。
其他文献
受传输介质、周围环境以及人为因素的影响,控制信号在传输过程中难免会出现时延.时延的出现严重影响系统的控制品质,甚至稳定性.要对时延系统实行有效控制,就必须获得系统的参数.因此研究时延系统的参数辨识方法具有重要理论意义和应用前景.本文以线性连续时间时延系统为研究对象,基于系统正弦响应的观测数据,研究其参数辨识方法,主要内容如下:1.对于线性系统,其正弦响应是一个与输入同频率的含迟延相位的正弦信号,即
多智能体系统的分布式协同控制近年来逐渐受到众多研究者的关注,在这个研究领域中,多智能体系统的安全性问题也逐渐成为了热门的新兴研究方向之一。在实际应用中,智能体之间的局部信息交换往往受到恶意攻击的影响。重放攻击是计算机黑客常用的攻击方式之一,其隐匿性往往对系统造成巨大的危害。由于无法预料攻击会发生在何时何地,因此必须提供有复原力的解决办法以削弱攻击带来的危害,确保多智能体系统在受到恶意攻击的情况下完
工业无线传感器网络(Industrial Wireless Sensor Networks,IWSN)在工业监控中起着重要作用,但IWSN通常位于人工干预少的环境中,且无线电传播的广播性质导致IWSN比有线传感器网络更容易受到窃听攻击。物理层安全性正在成为一种有希望的安全通信范式,利用无线信道内在的时变性、互易性和差异性等特性,其实质为减少窃听者获得的合法信息同时最大化合法节点之间的安全通信速率,
模型预测控制(Model predictive control,MPC)在处理复杂约束、多变量系统的控制问题时表现出了巨大的潜力,已经在众多工业领域中获得了成功的应用,并逐渐成为现代工业环境中最常见的优化控制策略之一。传统的模型预测控制方法采用周期滚动优化的模式,并且优化控制问题通常较为复杂,使得在线计算量较大,限制了其在实际控制系统里的应用范围。尤其是当需要控制的系统通信和计算资源受限时,更加难
目前,在日益提升的计算力与海量的标注数据的推动下,以深度学习为代表的人工智能实现快速的发展,但在其高准确率的背后也存在着通用智能水平弱,计算力依赖度高等局限性。以第三代人工神经网络-脉冲神经网络(Spike neuron network,SNN)为代表的类脑计算借鉴了大脑的高效率和低能耗的计算特点,被认为是有望解决人工智能问题的重要途径。由于SNN的快速乃至实时的仿真需求以及明显的分布式计算特征,
人类大脑智能水平高、功耗低,其计算模式非常值得借鉴。类脑计算通过模仿生物大脑的运行机制来实现信息处理,它主要以脉冲神经网络(SNN,Spiking Neural Networks)为基础,实现方式主要分为硬件实现和软件实现两种。硬件实现方法普遍采用专用类脑计算芯片与系统来实现脉冲神经网络。该种方法可以提供更佳的能效指标,但代价高、适应性差,当其与应用负载不匹配时,计算能效表现往往会大打折扣。软件实
随着工业设计的不断创新,工业设备与人的数字化进程正在迅速加快。工业信息物理系统(Industrial-Cyber-Physical-System,ICPS)通过无线网络结合信息系统和物理设备,实现工业智能化计算、通信和控制。但是ICPS通信网络的脆弱性使得系统容易受到数据注入攻击的破坏,造成工业设备故障,系统运行性能显著下降,甚至系统崩溃。ICPS在极端工业环境下计算、电池设备等通信资源是有限的,
智能设备的兴起,基于位置的服务的社会和商业需求显著增加。在室外环境中长期以来使用GNSS进行导航或确定准确的位置信息。由于GNSS信号无法穿透建筑物以及复杂的室内环境,GNSS无法在室内环境中提供可靠的基于位置的服务。MEMS传感器在智能手机中的部署为行业和学术界带来了新的机遇和挑战。室内环境中基于位置的服务的需求和潜力迫使研究人员研究更可靠、准确、低成本的室内定位方法。基于智能手机的室内定位技术
随着物联网产业的蓬勃发展,无线传感器网络为其提供了区域感知、数据采集等多方面的应用支撑,而信息路由协议是影响是影响传感网性能的重要研究领域。各传感器节点一旦被放置则难以改变位置更换电池,节点间一般采用单跳或多跳的形式实现自组织通信,单一的随意路由选择极易造成网络资源浪费,形成“能量空洞”等现象。因此,应对不同应用场景,链路的不同需求,应设计具有针对性的网络路由算法。论文针对层次型路由算法在节点异构
随着机器人应用领域不断扩展,机器人智能化控制技术愈见短板。常用的机器人控制方式主要是通过示教器或者离线编程的方法。这种固定的点到点的操纵控制方式,不能够应对复杂的抓取环境,需要机器人具有更高的智能化。此外,传统的机器人抓取针对的是特定的检测工件,通过人工设计特征提取,并使用模板匹配等方法。该种方法可移植性不强,鲁棒性较低。因此,面对类别多样、姿态各异的抓取对象,本课题提出一套在ROS(Robot