约束矩阵方程问题在结构设计、系统识别、自动控制理论、有限元、振动理论、线性最优控制等领域中有着广泛的应用,至今已取得很多研究成果.研究约束矩阵方程解的秩的分布问题,
超越性的判断问题是数论中一个重要的问题.几乎所有的实数都是超越数,但是却没有一个行之有效的判断实数超越性的标准.从实数的表示方法来看,对于任意的实数,无论它的连分数
留级学生由于巨大的学业压力和留级带来的挫败感,容易出现自我认知偏差、情绪情感低落、人际关系失调等消极心理特征,从而成为心理问题的易发和高发群。本文分析了留级学生心理
随着再保险的提出,最优再保策略的研究备受关注,其体系也日渐完善.在实际生活中,当预期损失超出承保能力时,再保险就应运而生.再保险是指保险人将承担的保险业务的部分或全部转让给其他保险人的行为.而如何在保险公司间分配损失和保费从而使之利益最大化的问题是有重要现实意义的,因为其中任何一项的改变都会引起最终利益的改变.本文在不同的保费原理下考虑了两个最优再保险问题,一是使价值函数最大化,二是最小化再保人的
概率论是研究随机现象统计规律性的一门数学学科,其理论和方法在金融、经济与管理、保险、医学、工农业生产、军事、灾害预报甚至社会科学领域中都有着非常广泛的应用。随机变
计算机辅助优化排样问题就是将一系列形状各异的零件排放在给定的材料上,找出零件的最优排布,使得给定材料的利用率最高,以达到节约材料,提高效益的目的。从数学计算复杂性理论看
教育发展的信息化趋势在逐渐加强,各种创新教育理念与新型教学方法逐渐应用到,交互式电子白板作为一种与信息技术相结合的先进的教学方法,其在初中藏语文教学中的应用促进了
在本文中,我们将研究随机游动和Lévy过程的超出与不足的渐近性,也包括Lévy过程自身的渐近性.所谓超出,就是给定一个水平后,相应的过程在某个时刻,超过这个水平的程度.超出在许多领
广义逆理论研究产生于求解线性不适定方程(其中方程包括线性代数方程、微分方程、偏微分方程和积分方程等)的过程。广义逆理论研究内容丰富,其中最为突出的是关于各类投影广义逆
马尔科夫分支过程(MBP)在应用概率和随机过程等领域占有很重要的地位。众所周知,控制着Markov分支过程演变的基本性质就是它的独立性,即不同的粒子在演变过程中是相互独立的。