论文部分内容阅读
TiAl合金具有低密度、高强度、优异的阻燃能力以及优良的抗蠕变性能和抗疲劳性能等优点,成为航空航天领域最具竞争力的轻质结构材料之一。但TiAl合金热变形能力差,室温塑性低以及750℃以上的抗氧化性能不足等制约了该合金的实际工程化应用。本文通过添加p相稳定元素(Nb和Mo)制备出高温时含一定量具有BCC结构的p相TiAl合金,提高了其热变形能力,同时改善了抗氧化性能。目前,有关添加Nb和Mo元素的含p/B2相TiAl合金的板材轧制及氧化行为方面的研究报道较少,也是该合金在工业试制过程中急需解决的关键性问题,对该合金最终实现商业化生产具有现实意义。本文对该合金的热变形行为、板材制备和氧化行为系统地开展了相关基础研究,主要工作和结果如下:(1)采用真空悬浮熔炉制备了尺寸为φ110mm × 190mm的Ti-44.45A1-3.80Nb-1.01Mo-0.29Si-0.14B合金(简称TNM合金)铸锭。经热等静压和均匀化处理后的TNM合金无明显成分偏析和微观裂纹,组织由γ/α2片层团、β/B2相和γ相组成,并确立了该合金的凝固过程和相变规律。(2)通过Gleeble3500模拟压缩铸态TNM合金实验证明含β/B2相的TNM合金具有较好的热加工性,可在1200~1250℃及0.01~0.5s-1区内进行变形,该合金属负温度敏感材料和正应变速率敏感材料,其流变应力曲线的升高、降低及平稳过程对应了加工硬化和应变软化的交替控制和动态平衡过程。利用摩擦修正后的热压缩实验数据求解了不同应变条件下的材料常数,构建了TNM合金的本构模型,并验证了此模型能很好的预测该合金的热变形流变规律。随变形温度升高和应变速率减小,TNM合金的动态再结晶的临界应变减小。TNM合金低温和高温变形机制分别以Y相位错滑移和β、α和γ相的位错滑移为主,变形软化机制为丫相的动态再结晶。在高温变形过程中β相起到协调或“润滑”作用,提高合金的变形能力。(3)基于动态材料模型(DMM),建立了铸态TNM合金的热加工图,研究了在热加工图不同区域中材料组织的演变规律,按能量耗散效率η将热加工图分为安全区域和流变失稳区域。从未经锻造TNM合金铸锭上取料包套,成功地在加热温度为1250℃和道次轧制速度递减(112/75/55mm/s)的条件下轧制出尺寸为510mm × 105mm×1.40mm的板材。轧态TNM合金的显微组织为细小的近γ组织,通过热处理其力学性能得到改善。(4)在TNM合金升温阶段的氧化过程,氧化物首先在γ相上生长,774℃是氧化物明显迅速长大的开始温度点。TNM合金在800℃的氧化实验表明:等温氧化500h后氧化膜保持完整,循环氧化710次时氧化膜开始剥落,而外加拉应力则提高了合金的氧化速率;该合金抗氧化性能明显好于传统的Ti-48Al-2Cr-2Nb合金。Nb和Mo的协同作用改变了合金的氧化膜形成机制,形成连续致密的A1203氧化膜,可阻碍氧原子向内扩散降低了氧化速率,提高了TNM合金的长期抗氧化性。