论文部分内容阅读
大量的高层建筑振动台模型试验数据和实际建筑地震监测数据表明,建筑结构在地震地面运动的激励下具有明显的波动效应特征:首先是随着高度的增加,各楼层的响应之间具有明显时滞现象;其次是沿建筑高度方向,结构的地震响应具有明显的驻波现象。这种波动效应特征在传统的、基于封闭系统下集中质量模型的结构动力理论框架下,无法得到合理的阐释与合适的评价。鉴于此,本文采用理论推导、数值分析和试验研究等手段,对一维均匀直杆、一维均匀直杆串联质点系和实际工程的振动台试验模型等典型介质模型在基底输入激励下的波动响应特征进行了分析和研究。主要研究内容和成果如下:1.对近现代建筑抗震理论的研究及应用进展进行了全面的阐述和总结,结合高层建筑、尤其是超高层建筑的发展趋势及其波动特征显著的特点,对传统结构动力理论的局限性进行了分析和评述,并进一步提出了开展高层建筑结构地震波动响应研究的理论路线和逻辑主框架。2.根据连续介质的固体弹性理论,并基于结构层模型、平面杆系模型以及平面剪切梁模型等经典计算模型,对建筑结构地震波动响应进行了理论推导和分析验证,结果表明,与基于分散质点的结构振动力学相比,基于连续体的波动力学更适合用于建筑结构地震响应分析,但由于波动分析的复杂性以及建筑结构的非完全连续性,对建筑结构进行完备的波动理论分析尚不具备工程可操作性。3.针对典型的封闭系统下一维均匀剪切直杆的激励响应问题,分别采用连续质量的模态叠加法、连续介质的波动解析法和集中质量的振型叠加法三种方法进行求解,并通过参数化模型进行了数值对比分析,结果表明:(1)基于连续介质的波动解析法能够真实地反映介质模型的波动效应;(2)基于连续质量的模态叠加法,其结果精度取决于所叠加模态的数量,叠加的模态数量足够多时,模态叠加法和精确波动法的计算结果基本一致;(3)基于集中质量的振型叠加法,其结果无法体现输入激励在杆件中传递的波动特性,且各质点处的响应峰值的误差随离散程度增大而增大,远远偏离实际。4.对5个附加质量不同的一维均匀直杆串联质点介质模型进行脉冲激励下的试验研究,结果表明:(1)各模型的加速度响应廓线,从底部向上逐渐增大,接近顶部出现“颈缩现象”,在顶部再次放大,整体上呈现为花瓶形状;(2)不同时刻各模型的加速度剖面普遍存在与零基线交叉的现象,脉冲激励下各模型加速度响应从底向上存在明显的时滞现象;(3)各模型的剪力廓线从底部到顶部的变化幅度不大,中部出现“束腰”现象,弯矩廓线属于反抛物线型;(4)各模型的变形响应在中上部异常剧烈,顶部与底部明显异向;(5)各模型的实测波速和经验估算波速以及考虑结构实际受力状态的理论等效波速,在数值上是一致的,等效波速的经验估算公式可适用于横向弯曲变形的均匀悬臂梁模型;(6)基于等效剪切波速不变的原则,给出了均匀剪切直杆简化模型的等效均布质量和等效剪切刚度的确定方法;(7)通过对各模型在激励时段和稳态时段波长与波动图像的研究和分析,揭示了单频脉冲激励下的驻波现象和复合频率激励下颈缩现象的波动机理,并指出经典振动理论的合适应用范围是建筑的总高度H不超过1/4波长λ。5.对国贸三期、上海中心、深圳平安金融中心三个超高层建筑的振动台模型试验测试数据进行了统计与分析,结果表明:(1)超高层建筑振动台试验模型在台面输入激励下的响应规律,与前述一维均匀直杆串联质点介质模型的脉冲激励响应规律具有高度的一致性,即各模型的加速度响应廓线或包络线存在明显的波腹与波节交替出现的现象、加速度剖面沿高度方向存在多次异向的情况等;(2)各模型的等效波速实测值与按c=4Hf1的经验公式估算值趋势相同,但存在一定的误差;(3)依据各模型的波速测试结果以及输入激励的频谱分析结果,给出了各模型不同激励下的波长估计结果,与试验结果基本相符。6.依据超高层建筑振动台模型试验数据的分析结果以及前述的理论分析和试验研究成果,进一步针对推荐等效波速计算公式与3个超高层建筑模型振动台试验实测波速存在误差的问题开展研究,给出了考虑结构第二自振频率f2影响因素的修正等效剪切波速计算方法,确定了等效剪切波速调整系数β。通过参考GB50011-2010(2016版)《建筑抗震设计规范》中不同场地类别下特征周期Tg的取值,初步给出了建筑结构实际地震响应波动分析过程中有效波长λ的取值。结合第4章中应用1/4波长λ判断经典振动理论合适适用高度的方法,给出了不同场地类别下1/4波长λ对应的建筑高度值。7.总结前面工作的基础上,提出了简化、实用的建筑结构地震波动响应分析方法,将实际建筑结构简化为等效直杆介质,通过经典波动理论对其地震响应进行求解,将求得的加速度、位移等具有波动效应特征的响应结果作为外荷载施加于原结构,进一步求解原结构构件的内力响应,进行后续的结构设计。8.对开放系统下若干关键因素对位移传递系数的影响进行了探索性的理论推导与算例分析,结果表明:(1)位移传递系数随输入激励频率的增加呈现降低的趋势;(2)集中质量越小,位移传递系数越大;(3)结构阻尼会降低节点位移传递系数,但是降低效果不显著。