【摘 要】
:
高平均功率光学增益腔在多个领域有着广泛的应用,包括用于汤姆逊散射产生高平均通量的X或伽马射线、光腔增强的高次谐波产生、引力波探测、稳态微聚束光源以及聚变能源实验等。本论文的工作聚焦于以汤姆逊散射应用为背景的高平均功率光腔的理论与实验研究。以提高汤姆逊散射所产生光子的平均通量为目标,其要求光腔内激光场具有尺寸约为几十微米的束腰、脉冲长度为皮秒量级,并且具有稳定的几百千瓦的平均功率。为了在汤姆逊散射模
论文部分内容阅读
高平均功率光学增益腔在多个领域有着广泛的应用,包括用于汤姆逊散射产生高平均通量的X或伽马射线、光腔增强的高次谐波产生、引力波探测、稳态微聚束光源以及聚变能源实验等。本论文的工作聚焦于以汤姆逊散射应用为背景的高平均功率光腔的理论与实验研究。以提高汤姆逊散射所产生光子的平均通量为目标,其要求光腔内激光场具有尺寸约为几十微米的束腰、脉冲长度为皮秒量级,并且具有稳定的几百千瓦的平均功率。为了在汤姆逊散射模拟中更精确并且更高效的描述光腔内强聚焦的激光场,通过使用一种推广型的Lax级数展开的方法给出了强聚焦、线偏振激光场的一组非傍轴近似的表达式。为了抑制在光腔内激光平均功率达到约100 kW时开始明显出现的影响光腔稳定性并且可能导致光腔失锁的模式不稳定性,使用将腔镜热弹性形变与腔内平均功率线性关联的Winkler模型较好的描述了引起光腔模式不稳定性的模式简并。我们提出并模拟证明了 D型镜法可以成功抑制光腔内的模式不稳定性。在汤姆逊散射光源装置ThomX的原型光腔上安装D型镜并实现了小时时间尺度的200 kW稳定的平均储存功率。针对影响光腔稳定性并阻碍腔内激光功率达到设计指标的光腔内功率快速下降现象进行了分析。这一现象表现为光腔内功率下降的幅度和时间尺度依赖于腔内的功率水平,进一步提升注入激光的功率最终导致光腔注入耦合镜表面的不可修复的损伤。通过对实验后已损伤的腔镜表面的成像和实验过程中采集的光腔的透射及反射数据的分析,发现主导这一现象的物理因素是腔镜表面的污染形成的热斑产生的表面形变所引起的散射损耗而导致的,并且通过模拟对这一现象进行了重现。这一分析可以帮助理解在多领域应用的高功率光腔上出现的此类功率快速下降现象背后的物理过程并起到损伤预警的作用。给出了清华汤姆逊散射光源装置TTX的原型光腔的完整设计并进行了初步实验,实现了将连续型激光器与光腔锁定的实验目标。对中心波长为1064 nm的连续型注入激光实现了 133倍的增益。并且给出了 TTX原型光腔高功率实验的设计以及将与电子储存环结合的TTX光腔的设计。
其他文献
肺炎链球菌(Streptococcus pneumoniae)是定植于大多数人上呼吸道的正常菌,但在免疫力低下的个体中可导致侵袭性感染,引发肺炎、败血症和脑膜炎等严重疾病。研究发现,该菌可以在透明(transparent)和非透明(opaque)菌落之间发生可逆转的相转换。透明菌落产生较薄的荚膜,对细胞有更高的粘附性,在宿主上呼吸道呈现更强的定植力。而非透明菌落则产生厚实的荚膜,能够更有效地逃逸宿
高时空分辨电子成像与电子衍射技术是用以观测微观、超快过程的强有力工具。相比于传统透射型电子显微镜以及电子衍射中的ke V量级电子束,基于光阴极注入器的高能电子束具有亮度更高、穿透能力更强、脉冲结构更短的优势,有望发展出具有更高时空分辨能力的高能电子成像以及电子衍射工具,并在高能量密度物理(high energy density physics,HEDP)诊断以及超快动力学研究等领域发挥重要作用。论
近年来,基于激光等离子体加速器的逆康普顿散射X射线源——全光逆康普顿散射源(all-optical inverse Compton scattering X-ray source,AOCS)取得了 蓬勃的发展。AOCS由激光等离子体加速器电子束与激光对撞产生,拥有准单色、微焦点、能量可调、偏振可控、规模紧凑等特点,在医疗影像、工业无损检测、核物理研究等领域具有广阔的应用前景。但是,目前关于AOCS
随着科学技术的发展和进步,生物序列及结构数据在以指数增长的速度增加,如何高效地从海量数据中提取关键信息,预测新数据所属类别,以及根据序列与结构数据表现的相似性从而研究物种间的系统发育关系成为近年来生物信息学中重要的研究问题。生物信息学中传统的序列比对以及结构比对方法通常复杂度较高、运算时间久,难以处理数据规模大或是结构较复杂数据,这就启发我们提出序列分析以及结构分析的新方法。在对序列分析的研究中,
相比于传统的X射线吸收成像,X射线光栅成像技术能够同时获得吸收、相衬和暗场三种图像信息,是近年来X射线成像领域的一大研究热点。光栅成像技术克服了吸收像中软组织等轻元素组成物质分辨率不足的局限性,同时能够适用于非相干的常规X光源,因而在临床诊断、工业生产和安全检查等方面具有重要的应用前景。本论文围绕常规X光源大视野光栅成像方法与系统研究,系统性地对大视野几何投影系统设计、X射线光栅成像技术信息提取算
在托卡马克等离子体中,湍流是引起反常输运,决定等离子体约束水平的关键问题。到目前为止,人们已经对托卡马克边界的湍流行为及其引起的输运进行了广泛的研究,但由于诊断技术的限制,对芯部湍流的研究还比较少。为了加深对芯部湍流及相关物理问题的理解,探索等离子体约束改善的运行模式,本论文在SUNIST和HL-2A托卡马克上开展了芯部湍流及流剪切作用的实验研究。论文首先对SUNIST的电源系统进行了全面升级,大
岩土工程领域有不少大变形问题伴随着土体与结构的接触,而土体与结构间的相互作用会显著影响结构周围土体的变形以及结构的安全性。土工接触问题的数值模拟已成为一个活跃的研究领域,也是各种数值方法中一个持久的挑战。对于土工动力接触问题,由于动荷载往往远大于静荷载,会引起结构或土体更加明显的破坏和变形。强夯是一个典型的土工动力接触问题,作为国内越来越重要的一种地基处理技术,系统研究其机理、揭示其规律并指导工程
装配式建造是一个复杂的系统工程,其实施环节多,系统中存在复杂的交互作用,大量的研究和实践表明,以现场为重心的建造管理已经不适用于装配式建造,很多不确定因素影响装配式建造的发展,装配式建造还缺乏完善的计划控制体系,存在大量返工风险。因此,从装配式建造全过程的角度出发,研究适用于装配式建造的过程优化方法与返工风险管理体系是很有必要的。论文界定了返工风险,并从供应链、利益相关者和工艺流程的角度全面梳理了
化学位移是核磁共振(NMR)最重要的物理观测量,容易被精确测量,且测量数据的可重复性极高。在某些情况下,化学位移是唯一能够获得的核磁数据。化学位移对结构的变化非常敏感,故能够用来获取生物大分子的结构和动态信息,由原子精度的化学位移得到的角度和距离约束是用NMR解结构的关键步骤。如何准确预测化学位移是NMR研究中最核心的问题之一。精确的化学位移预测器能够简化繁杂的谱峰指认工作并进一步提高精确度,更重
地震会造成城市内大量建筑破坏,并引发非结构构件坠物、次生火灾等一系列次生灾害,进行科学合理的地震灾害情境模拟,对于地震应急救援和疏散方案的制定具有重要意义。本文针对重点城市尺度建筑倒塌情境可视化和避难场所选址的问题、重点区域尺度次生坠物情境人员疏散的问题以及重点建筑尺度震后建筑火灾救援训练平台的问题,开展了深入的研究,主要工作内容如下:(1)提出了一种考虑层间位移角和面外加速度耦合影响的建筑填充墙