论文部分内容阅读
本文在弱正则系数和非光滑边界假设下,分别研究了具有标准增长或非标准增长的散度型椭圆方程Dirichlet问题、抛物方程Cauchy-Dirichlet问题以及相关的障碍问题弱解梯度的整体Calderon-Zygmund型估计.具体内容如下:第一章引言部分介绍了该研究的选题背景,引入了相关概念和符号,综述了偏微分方程Calderon-Zygmund理论的发展概况以及下文的主要内容.第二章考虑了一般形式的椭圆方程Dirichlet问题弱解在加权Lorentz-Sobolev空间中的整体正则性;其中假设该方程的主项系数满足部分正则,即关于一个变量可测、关于其余变量有小的BMO半范(称部分有界平均震荡,简称为部分BMO),区域边界满足Reifenberg平坦.作为其直接结果,在上述相同的系数和区域边界假设下,建立其解梯度的整体Lorentz-Morrey估计;进而在自由项的较高正则假设下,得到了弱解的整体最优指数Holder估计.第三章利用简单的直接估计替代了通常的加权Lp估计方法,得到了定义在半空间上的散度型线性椭圆方程Dirichlet问题在部分正则系数下弱解梯度的整体Morrey估计.这里部分正则系数aij(x)指的同样是关于自变量满足一个方向可测、其余方向有小的BMO半范.第四章考虑定义在Reifenberg非光滑区域上具有小的部分BMO主项系数的线性椭圆障碍问题弱解梯度在变指数幂下的整体Lorentz估计;这里的变指数幂 p(x)满足 log-Holder 连续.第五章对于定义在Reifenberg非光滑区域上具有可控增长的散度型拟线性椭圆方程的Dirichlet问题,建立了弱解梯度的整体Morrey估计.这里主要假设是主非线性项关于空间变量满足小的部分BMO,低阶项满足可控增长.该研究将近期关于可控增长的拟线性椭圆方程的一系列工作涉及非线性项假设从小的BMO推广到更弱形式的部分BMO,而得到相同的整体估计.第六章研究了定义在Reifenberg平坦区域上的p-Laplacian型非线性抛物方程Cauchy-Dirichlet问题弱解梯度在加权Lorentz空间框架下的整体估计.这里主要正则性假设是非线性项关于时间变量t可测,关于空间变量x有小的BMO半范.本文拓展了相关抛物方程Cauchy-Dirichlet问题的正则性理论从Lebesgue空间到更加精细的加权Lorentz空间.第七章考虑定义在更粗糙的拟凸区域上,具有非标准增长的抛物障碍问题弱解梯度在变指数幂下的整体Lorentz估计.其中非标准增长的变指数p(t,x)满足强型log-Holder连续,非线性项关于时间变量可测、关于空间变量有小的BMO半范.该研究不仅将近期文献中涉及非标准增长的抛物问题的Lp理论拓广到更精细的障碍问题在Lorentz空间框架下的正则性,而且也将区域从Reifenberg平坦拓广到更粗糙的拟凸情形.第八章是对本研究工作的总结以及对后续工作的展望。