【摘 要】
:
随着社会经济的发展和城市基础设施建设的进步,废弃混凝土等建筑垃圾排放量逐年增多,造成了巨大的经济损失和环境污染。氧化石墨烯(Graphene Oxide,GO)等纳米材料可以在纳观尺度上改善水泥基材料的性能,利用此特点改性再生混凝土,实现混凝土垃圾的重复使用循环再生,有着重要的学术价值和现实意义。现阶段,使用GO对再生混凝土进行改性强化,在理论基础与应用技术层面还存在着诸多不足。基于此,本文从改性
论文部分内容阅读
随着社会经济的发展和城市基础设施建设的进步,废弃混凝土等建筑垃圾排放量逐年增多,造成了巨大的经济损失和环境污染。氧化石墨烯(Graphene Oxide,GO)等纳米材料可以在纳观尺度上改善水泥基材料的性能,利用此特点改性再生混凝土,实现混凝土垃圾的重复使用循环再生,有着重要的学术价值和现实意义。现阶段,使用GO对再生混凝土进行改性强化,在理论基础与应用技术层面还存在着诸多不足。基于此,本文从改性强化机理、材料力学性能、耐久性分析等角度,对GO改性再生混凝土进行研究,主要内容如下:(1)GO对再生混凝土力学性能的影响通过基本力学性能试验,研究了 GO掺入量、含氧量、再生粗骨料取代率等因素对再生混凝土物理力学性能:抗压强度、抗折强度、劈裂抗拉强度的影响规律。结果表明:GO的掺加提高了再生混凝土的基本力学性能。掺入比例为水泥质量0.06%时再生混凝土各项强度增长值最高;采用25%含氧量GO强化效果略优于40%含氧量GO;100%骨料取代率的再生混凝土强度提高比例高于50%骨料取代率的再生混凝土;GO改性再生混凝土的拉压比随着强度的提高未出现明显的下降。(2)GO改性再生混凝土微观机理分析采用X射线衍射、扫描电子显微镜、X射线断层扫描、压汞以及纳米压痕技术对复合材料的晶体结构、水化产物形貌、孔隙结构与分布、界面过渡区微观力学性能进行了研究。结果表明:GO的掺入有助于水化硅酸钙(C-S-H)凝胶相的转变,促进了水化产物自密化;调控微观形貌,优化了孔隙分布;强化了界面过渡区的微观力学性能。(3)GO改性再生混凝土抗冻融及抗氯离子渗透性能研究采用快速冻融法、电通量法对不同GO掺量再生混凝土的抗冻融性能、抗氯离子渗透性能进行了研究。通过量化GO对再生混凝土这两项耐久性能的影响,建立了改性再生混凝土冻融循环损伤模型以及氯离子渗透模型。(4)基于分子动力学的GO影响C-S-H生长机理研究采用反应分子动力学的方法,模拟了在GO环境下早期C-S-H的生成过程。C-S-H的结构变化表明:GO的位阻效应以及含氧基团的离子吸附作用,降低了 C-S-H的聚合势垒,硅原子与桥位氧原子键连单元比例增加,提高了 C-S-H的聚合度。为GO的成核、模板效应提供了分子动力学模型依据。
其他文献
随着杆系结构在民用和工业等建筑中的广泛应用,深入了解其受力特点和失效模式已成为工程设计人员的迫切需求,而非线性数值分析方法可有效获得杆系结构的损伤破坏过程,为研究其灾变机理和性能评估提供强有力的工具。已有研究针对杆系结构非线性求解精度和计算效率提出了许多分析方法,可归纳为两类:第一类是基于构件层面的宏观分析方法,具有建模简单、计算量小等特点,但不能实现局部区域的精细化模拟;第二类为基于材料层面的非
大量的海上观测(察)表明,畸形波是一种广泛存在(近海直至各大洋)且具有突发性和能量集中性的异常大波浪,其存在的广泛性、非小概率性、突发性、超常破坏性,给海洋工程结构及航行船舶安全带来的危害性是显而易见的。现有相关规范的设计标准,通常采用不同重现期的H1%大波作为设计波高,近乎无视畸形波的存在,这促使工程及学术界对畸形波展开了广泛的研究。本文采用物理模型试验方法,以典型且具有工程背景的两种浮式结构—
颗粒物沉积现象广泛存在于工业生产中,如火力发电、化工、机电和制药等领域。其中,火力发电中采用静电除尘器来脱除烟气中的颗粒物,对于粒径大于10μm的颗粒,除尘效率达到99%以上,然而对于微纳米尺度颗粒存在明显的穿透窗口。为此,通过降低烟气温度使得烟气湿度提升,增加了接触表面间的粘附作用力,从而进一步提高细颗粒脱除效率、实现超低排放。当飞灰颗粒在静电力和流体曳力作用下运动到集尘板表面时,飞灰颗粒与集尘
近年来,电子信息技术、无线通讯设施和雷达探测系统的飞速发展导致电磁波在民用和军用领域中广泛应用,与此同时无处不在的电磁波也对人体健康和信息安全造成了严重危害,并对军用武器装备的生存防御能力提出了极大考验。因此,研发高效的吸波材料用以消除电磁干扰和污染、提升武器装备的生存和防御能力是十分必要的。此外,对于高度集成的精密电子设备或是武器装备的特殊部件,如导弹外壳、发动机尾喷管、坦克排气管等,在运行过程
半导体光催化技术被认为是在应对能源与环境问题的策略中,一种具有良好潜力的技术。TiO2纳米光催化材料由于具备高效无毒、稳定性好、成本低廉等优势,一直受到研究者的广泛关注。然而受制于较宽的带隙和较低的光生载流子分离效率,其应用受到了诸多限制。宏观上表现为光催化剂对可见光吸收能力差,以及光催化效率低下,这使得其应用受到了较大局限。本论文基于对相关文献的充分调研,以氧化镍/二氧化钛纳米片(Ni-TNSs
公共建筑空调系统的优化运行控制是保证建筑环境热舒适性、降低运行能耗和实现建筑节能减排的重要技术措施,一直是国内外研究的难点和热点问题,并逐渐被广泛用于实际工程之中。同时,空调环境热舒适性和人体热感觉也是建筑领域国际上众多机构长期研究的重点,其成果为诸多标准规范的制定和完善提供了科学依据。但从总体上看,空调系统优化运行控制与建筑环境热舒适性、特别是与人体实时热感觉在研究和应用上存在着明显的脱节问题。
微生物燃料电池(microbial fuel cell,MFC)能利用产电菌将有机物中的化学能直接转换成电能,近年来受到广泛关注。作为单室MFC的一种,沉积型微生物燃料电池(sediment microbial fuel cell,SMFC)具有结构简单、维护方便和成本低等优势,具有很大的应用潜力。但SMFC存在底泥中有机物利用率低和产电不易储存这两方面的问题,限制了该技术的实际应用。针对SMFC
胰腺炎是诱发胰腺导管腺癌(Pancreatic ductal adenocarcinoma,PDAC)的重要危险因素。已有研究报道,腺泡-导管化生(Acinar-to-ductal metaplasia,ADM)是腺泡细胞应对胰腺炎损伤的第一反应,受炎症或致癌信号长期刺激,ADM病变会引起胰腺上皮内瘤变(Pancreatic intraepithelial neoplasias,PanINs),并
工业生产过程中普遍存在着时滞现象,例如能量传递、物料传输、信号通讯等。如果控制设计不对时滞加以处理,会影响闭环系统的控制性能,甚至导致系统不稳定。此外,实际生产过程中不可避免地会遇到负载干扰,如何有效地抑制或消除负载干扰是提升系统控制性能的重要问题。另外,在实际系统运行中经常存在因执行器饱和而影响控制性能的问题,处理不当会引起闭环控制系统的不稳定性。尽管现有文献给出一些关于时滞系统的抗扰控制和反饱
拓扑优化,可以通过“自由”优化材料的布局设计出新颖的甚至颠覆性的创新构型,已经成为结构创新设计的重要工具。增材制造通过逐层的方式实现复杂结构的制造,是一种先进的制造技术。将拓扑优化与增材制造结合,发展面向增材制造的创新设计方法,已经成为研究热点。其中优质构型和可制造性是发展设计方法关注的焦点。为便于制造,拓扑优化结果往往需要具有特定的几何特征;另一方面,一些具有特定几何特征的结构具有非常优异的力学