论文部分内容阅读
我国的一次能源结构以煤为主。煤及其它化石燃料燃烧利用过程中的C02排放是造成全球温室变暖的主要原因,燃烧过程释放的NOx是目前我国环境污染的最重要的污染物之一。富氧燃烧作为最重要的二氧化碳捕获技术之一,在NOx排放控制上具有很大潜力,研究化石燃料的富氧燃烧过程及其NOx的排放过程具有重要意义。本文按照富氧无穷分级均相反应机理→煤粉在小型间歇式O2/C02气氛下释放NOx的机理试验→小型连续式沉降炉富氧分级燃烧NOx控制机理试验→中试型富氧分级燃烧热态试验→富氧燃烧大型应用数值仿真的研究路线对富氧燃烧过程中的NO、生成与控制进行了研究,并探索了降低富氧燃烧过程及其他CCS系统的碳捕获成本的方法。建立了一维有限元模型研究无穷分级燃烧的NO控制以及富氧燃烧气氛的影响。使无穷分级燃烧发挥最大的NO、控制作用有赖于合理的配风参数和温度、停留时间等环境参数的选择。提出了富氧燃烧时依赖CO2的不分支链反应机理,解释了CO2在无穷分级时一次风中氧气相对不足时抑制NOx生成、氧气相对充分时促进NOx生成的现象。富氧燃烧气氛下由于没有N2,在高温时不生成热力型NOx。在水平管式炉研究煤粉富氧燃烧过程中的NOx释放机理。氧气浓度的提高造成了反应时间的缩短和NO的浓度提高。NO、在氧气浓度达到70%以上后趋于稳定。02/C02混合物中氧气比例的提高以及C02浓度的下降使得温度对NOx的影响被减弱。煤阶越高的煤样在O2/C02气氛中燃料N向NOx的转化率可能更高。在沉降炉上研究煤粉富氧分级燃烧对NOx的控制,并建立了一维的两相反应模型进行分析。在未分级条件下,由于氧气浓度提高造成的停留时间变长,煤粉在30%氧气浓度的O2/C02富氧燃烧气氛下的NOx排放量是相同条件的空气下燃烧时的77%-80%。分级富氧燃烧条件下,延长一次风在还原区的停留时间可使NOx降低25%-29%。富氧燃烧条件下的气化反应有助于NO在焦炭表面的还原,抑制焦炭NOx的生成,并且在还原性气氛下更加显著。整体氧气浓度为74%的高浓度富氧燃烧中试试验中测得的NOx生成规律受分级配风的影响趋势与沉降炉试验和数值模型获得的趋势一致。在保证稳定着火的前提下,减少一次氧量、提高三次氧量可降低高氧气浓度富氧燃烧时的NOx排放。一次风中采用空气送粉的富氧燃烧可能在高温条件下生成大量热力型NOx。通过热力计算和三维CFD模型从热力性能角度验证了大型锅炉富氧燃烧改造的可行性。提出了绝热火焰温度与改造前一致的改造原则,作为富氧燃烧改造时氧气浓度选择的依据,可操作性强。利用三维CFD模型对富氧燃烧改造后NOx控制策略进行了研究。富氧燃烧改造后,不考虑烟气再循环的再燃作用时NOx生成量可降低至改造前的47.3%。OFA风率从0提高到20%时,NOx的生成量降低了近1/3。提高OFA风率会使主燃区的还原性气氛加强,并减少主燃区烟气量、延长含N元素的物质在还原区的停留时间,造成NOx生成量下降。富氧燃烧改造后,由大量烟气再循环形成的NO再燃使富氧燃烧的NOx净生成量降低72%。单位发电量的污染物排放与减排与发电效率密切相关。通过流程仿真的手段对比主流的碳捕获技术并对富氧燃烧流程的效率提升进行了探索。富氧燃烧技术、IGCC-CCS系统、基于氨法吸收的燃烧后Post-CCS技术在当前技术条件下都造成系统效率下降,碳捕获代价均在电耗1.30MJ/kgCO2左右。加压富氧燃烧可使富氧燃烧的碳捕获电耗降低25.6%。所提出的液氧自增压流程可使其系统净效率提高2.5%。