论文部分内容阅读
太阳是巨大的高能粒子加速器,能产生高达数GeV的离子和数MeV的电子。耀斑是太阳大气中剧烈的能量释放过程,高达1032-1033erg的能量在102-103秒时间内释放,大于20keV的电子和大于1MeV的离子包含了其中10%-50%的能量,这意味着加速和能量释放过程是密切相关的。所以,粒子加速就成为太阳耀斑研究最有吸引力的一个方向。 磁重联电流片中直流电场加速是太阳耀斑中粒子加速的主要机制之一。用试验粒子模拟直流电场中电子和质子加速对研究粒子和耀斑物理都具有重要意义。本文内容安排如下: 第一章主要介绍太阳耀斑相关的物理背景,包括太阳耀斑的硬X-射线和射电观测、磁重联的基本概念和耀斑的理论模型。 第二章介绍了三种不同的加速机制,包括由MHD湍动引起的随机加速、漂移激波和扩散激波加速、重联电流片中的电场加速。 第三章研究了带电粒子在有引导磁场存在的单X-点形电流片中的加速特征。使用试验粒子的方法计算了粒子的运动轨迹。研究了粒子最终能量和初始位置的关系。我们发现引导场的存在不仅使电子和质子分离,也使电场有选择的对不同初始位置的粒子进行加速。粒子的能谱是典型幂律谱。谱指数依赖于引导场、背景磁场及初始粒子分布。 第四章研究了带电粒子在对称和不对称多X-点和O-点电流片中的运动特征。粒子可以在很短的时间内被加速到很高的能量。电子和质子的能谱都呈现双或多幂律分布。被加速的粒子或者被磁岛束缚获得更多能量,或者跃过数个磁岛离开加速区。引导场的存在导致电子和质子运动方向的分离。 最后,在总结本文的同时,对今后的工作进行了展望。