论文部分内容阅读
变形模型凭借其独特的优势,在图像分割领域受到了越来越广泛地研究和应用。本文对变形模型在医学图像分割中的应用做了系统研究并加以改善,主要在以下几个方面作了拓展和创新性工作:提出了基于提升B样条小波的GVF(梯度矢量流)模型:虽然GVF变形模型解决了传统参数变形模型的两个关键性问题,但它对初始轮廓位置有一定要求,计算量也很大。小波分解具有多分辨率特性,并且小波变换的模极大值与信号的突变有对应关系。二次B样条小波在边缘提取中是最优的,提升方法已成为构造第二代小波的关键技术,所以设计了基于提升B样条小波的GVF模型。此模型利用了GVF模型分割复杂几何结构的优势,同时利用小波分解的特性降低了GVF模型对初始位置的敏感度;另外,由于应用提升方法,小波变换问题简化,计算速度快。应用改进的各向异性扩散滤波方法提高基于水平集的几何变形模型的抗噪性:基于水平集的几何变形模型可以容易地处理拓扑的变化和复杂的几何形体,但仍受噪声的影响,容易得出错误的结果。传统的高斯滤波在平滑去噪的同时也会模糊图像的重要信息。各向异性扩散滤波不仅能很好地保持目标的边界而且对边界具有增强的作用。本文应用对称指数滤波器对各向异性扩散滤波进行改进,并引入自适应估计K值法,并进一步提出基于改进的各向异性扩散滤波的几何变形模型,应用其对医学图像进行分割,可以很好地提高基于水平集的几何变形模型抗噪性。提出递进的基于窄带的多分区C-V方法:Mumford-Shah模型可解决基于水平集的几何变形模型的“泄漏”问题。Chan和Vese提出一种简化的基于水平集的Mumford-Shah分割模型,进一步又提出了应用多个水平集函数的多分区方法,可处理复杂的几何结构,但它计算量大、初始化困难,本文针对上述问题提出递进的多分区C-V方法,此递进方法分为多个阶段,每一阶段只需一个水平集函数;并且,下一级分割步骤是在上一级分割步骤完成之后进行的;在每一级分割过程中,应用了窄带区域,只是处理窄带中的点,计算量大大减少。此算法对复杂几何结构的处理能力加强,相比多分区C-V方法计算速度加快。