气动挤出3D打印制备多功能复合HA骨支架研究

来源 :南昌大学 | 被引量 : 0次 | 上传用户:jycysn
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统骨组织工程的骨缺损治疗中,骨植入支架孔隙难以控制,支架样式单一,以及支架功能性不足等缺点限制了其在临床上的使用。因此,制备具有细致结构和多功能性的植入支架是目前研究的重点。随着科技的发展,近年来快速成型技术(也称3D打印技术)成为了一项热门的研究课题,作为直写技术代表的挤出沉积技术拥有广泛的材料适用性,在纳米材料成形方面存在巨大的优势,为支架的成形提供了有力的保障;多样材料和多种方式结合羟基磷灰石形成复合材料弥补了纯羟基磷灰石材料的不足,为实现支架材料的多功能性提供了研究思路。为了实现不同骨缺损类型的修复,同时满足骨植入材料的多元化功能。本文以商用纳米羟基磷灰石(n HA)为原料,创新性使用了本实验改进的气动挤出3D打印技术、离子凝胶化法制备得到形态均匀、孔隙良好的两种形态的HA植入支架,解决了传统方式中支架不均匀和孔隙不可控的缺陷。通过材料学和生物学测试和实验探究了不同改性方法对HA支架的优化作用。采用间断挤出方式,探究了不同成型工艺参数对微球支架宏观形貌的影响,总结得到了一组较好的浆料配制方案(1%SA和20%HA);批量打印的微球平均直径为2.08±0.32 mm,范围在1.7~2.3 mm之间。采用不同金属阳离子结合离子凝胶化法制备了不同阳离子掺杂的HA微球,并使用梯度温度进行烧结处理,探究不同离子和温度下HA微球的性能变化。分析表明,Cu、Zn离子掺杂微球可以使HA微球产生第二相,其晶粒尺寸也略大于Ca、Sr离子掺杂的HA微球。体外降解表明,双相微球4周的降解率可达21.21%,显著高于单一HA相微球,这有利于在新骨成型时提供生长空间。抗菌实验结果表明,HA结合功能化金属离子(Cu、Zn),赋予微球支架良好的抗菌性能。采用连续挤出方式,制备了自组装的丝素蛋白(SF)-HA多孔支架。该支架具有良好的孔径结构(300-400μm),有利于细胞的生长和物质交换,表面的粗糙结构使细胞更容易附着,SF结合HA可以促进细胞的增殖分化。本文研究表明,以气动挤出3D打印技术可以制备多种形态的骨组织工程支架,通过离子掺杂和物理混合得到不同功能化的HA植入支架。为临床骨修复的多样化提供了实验基础,丰富了生物制造方法。
其他文献
实验目的:机体中肾上腺素升高,作用于心肌细胞β1受体,使心收缩力增强,心率加快,心输出量和心肌耗氧量增加,使机体的血压升高,其长期作用可导致心肌肥厚和心脏纤维化。心肌细胞和成纤维化细胞是心脏组织的主要组成成分,共同维持着心脏的重要功能。在长期交感神经兴奋、高血压等情况下,心脏成纤维细胞分化为肌成纤维细胞,分泌过多的胶原纤维,从而造成心脏纤维化。表皮生长因子(TGF-β)是诱导心脏纤维化的关键因素,
含硫小分子,如半胱氨酸(Cys),高半胱氨酸(Hcy),谷胱甘肽(GSH)和H2S等,参与生物体中许多重要的生理过程。其含量异常跟癌症密切相关,因此检测细胞内的Cys,Hcy,GSH和H2S含量是非常有意义的。荧光检测法作为最有潜力的检测方法,且一部分荧光染料可作光敏剂用于癌症的光动力治疗研究。二硫键作为GSH切割位点已被广泛研究。本文以萘酰亚胺和四苯乙烯为荧光团,二硫键作为识别位点,合成了化合物
研究背景:肝癌作为发病率和致死率最高的恶性肿瘤之一,严重危害人类的生命和健康。全球每年新增肝癌病例90万例,同时每年约83万人因肝癌死亡,这使得肝癌成为一个日益严重的全球卫生保健问题。缺乏合适的早期检测生物标志物和有效的治疗手段是肝癌高死亡率的重要原因之一。因此迫切需要发现有效的肝癌诊断标志物和治疗靶点。p27蛋白是一种非典型的肿瘤抑制因子,它通过结合和调节细胞周期蛋白依赖性激酶(CDK)的活性调
氟喹诺酮(Fluoroquinolones,FQs)是一类以4-喹诺酮为基本结构的人工合成抗菌药,主要应用于畜禽动物细菌感染性疾病的防治。FQs主要通过与DNA旋转酶或拓扑异构酶结合而阻碍细菌DNA的合成,从而对革兰氏阴性菌和革兰氏阳性菌产生抗菌作用。但是近年来,人类对FQs的不合理使用问题日益突出,伴随而来的环境污染、耐药性和药物残留等问题严重威胁人类健康。因此,我国对动物源性食品中FQs残留超
磷酸化是一种常见的蛋白质翻译后修饰,在蛋白激酶的作用下,底物蛋白的氨基酸残基上共价结合一个磷酸基团。磷酸化通常发生在底物蛋白的丝氨酸、苏氨酸以及酪氨酸残基上,是调节蛋白质功能并进行细胞内信号转导的重要机制,在许多细胞过程的调控中起着关键作用,包括细胞周期、生长以及凋亡。磷酸化除了在丝氨酸、苏氨酸或酪氨酸的侧链羟基上形成稳定的磷酸酯键(P-O bonds)外,也可以在组氨酸的侧链咪唑基团上形成高能、
真菌毒素是一些丝状真菌产生的次级代谢产物,其中玉米赤霉烯酮(ZEN)、脱氧雪腐镰刀菌烯醇(DON)和赭曲霉毒素A(OTA)广泛存在于谷物粮油及饲料中,对人和动物都具有较大的毒性作用,并对粮食安全构成重大威胁。本文研制出可同时检测谷物及中药材中ZEN、DON和OTA的两种纳米金免疫层析试纸条,具体研究内容和结果如下:(1)采用Frens法制备球状纳米金,控制还原剂柠檬酸三钠的加入量来考察纳米金大小和
全氟烷基化合物(Perfluoroalkyl substances,PFASs)作为一类新型持久性有机污染物,被广泛用作表面活性剂、阻燃剂、防水剂和不粘剂。PFASs具有远距离迁移能力、生物蓄积性及很高的稳定性,可长期且稳定存在于空气、水、土壤等环境介质及生物体内。PFASs具有的潜在毒性,对生物生长、生殖、发育及免疫系统产生影响,因此,环境中PFASs的污染特征及产生的人体健康风险受到广泛关注。
环境污染对生态环境和人类健康的影响已引起人们的高度重视。多溴联苯醚(Polybrominated Diphenyl Ethers,PBDEs)是一种持久性环境有机污染物,主要通过饮食暴露于人体,并引起多种毒性。PBDEs进入动物体内后主要储备在脂肪组织和肝脏中,具有持久性、亲脂性等特点。橙皮苷(Hesperidin,Hsp)是柑橘类水果中的主要黄酮活性成分,前期研究已证实Hsp具有多种生物学活性;
凉粉草是我国常用的药食两用植物资源,具有很高的营养价值和潜在的保健功能。凉粉草多糖(Mesona chinensis Benth polysaccharide,MP)是凉粉草主要活性成分之一,前期研究已表明其具有抗氧化、抗病毒、降血糖、降血脂等生物活性,且硫酸化凉粉草多糖(Sulfated Mesona chinensis polysaccharide,SMP)能增强免疫调节活性和抗氧化活性。环磷
基于塞贝克效应,热电器件能够有效的利用自然存在的温差梯度或者废弃的热源进行电能转换,在环境污染和能源日益短缺的今天具有良好的社会效益。因为Bi2Te3基热电材料是目前在室温下能展示出最高热电优值的无机材料,所以它的利用前景倍受关注。对于Bi2Te3热电模块而言,它的热电转换性能优劣不仅仅受材料自身的影响,也取决于热电引脚处焊点质量的好坏,因此提高其焊点可靠性对于整个模块而言具有重要的意义。本文通过