论文部分内容阅读
钢包底吹氩工艺是一种成本低、操作简单、精炼效果好的炉外精炼技术,其中,透气砖是实现钢水吹氩处理的重要功能元件。当前我国钢铁企业广泛选用狭缝型透气砖作为透气元件,在精炼后期的“软吹”氩处理阶段,普遍存在钢水中夹杂物去除效率较低的问题,这显然不利于洁净钢、高洁净钢的冶炼。弥散型透气砖中有大量呈弥散分布的贯通气孔,气体经过透气砖进入高温熔体中可以形成尺寸细小且均匀的气泡群,这对于提高钢水纯净度有着积极影响。弥散型透气砖作为一种典型的颗粒堆积型多孔透气材料,由于骨料颗粒粒度和形状均存在各异性,以及受成型及热处理过程中所伴随的各种物理化学反应等因素的影响,材料中的气孔大小、形状及尺寸分布等显得尤其复杂。因此,从颗粒堆积角度出发探讨影响颗粒堆积型多孔透气材料气孔结构特征的关键因素,揭示气孔结构参数对多孔透气材料透气性能的影响,实现多孔透气材料透气性能的可调可控具有重要意义。另外,在服役过程中透气砖与钢水直接接触,需要承受很大的钢水重力及钢流和气流的冲刷力,因而透气砖应兼具高温下力学强度高和透气性好这两种特性,如何均衡材料的力学强度和透气性能显得尤为关键。基于此,本论文的研究内容主要包括:从骨料/基质配比、骨料粒度及骨料形状的角度对颗粒堆积型多孔透气材料的气孔结构参数进行调控,并对多孔透气材料的透气性能、力学性能进行研究;从结合界面设计出发,通过在骨料颗粒结合界面处原位生成板片状的六铝酸钙和六铝酸镧,研究了高温功能相的引入对多孔透气材料力学强度、气孔结构参数及透气性能的影响,并探讨了相关的影响机理;采用金属直接氧化结合工艺,以期在较低热处理温度下制备出具有较高强度的多孔透气材料,研究了金属Al粉加入量及其与单质Si粉的复合引入对多孔透气材料显微结构、物相组成、常温和高温力学强度及气体渗流行为的影响;基于Forchheimer方程对气体在多孔透气材料中的气体渗流曲线进行拟合分析,采用灰色关联理论来评估气体渗流系数(k1和k2)与气孔结构参数的相关性;最后,采用物理水模型研究了气体经过多孔透气材料进入水中的气泡行为。得到的主要结论如下:(1)颗粒堆积型多孔透气材料中的骨料堆积气孔具有很好的贯通性,这部分气孔可以作为气体渗流的通道;通过调节骨料基质配比和骨料粒度均可对刚玉质多孔透气材料的气孔结构参数进行调控。前者主要影响着多孔透气材料的显气孔率、气孔表面分形维数及堆积气孔的尺寸和体积分数,后者则对骨料堆积气孔的尺寸及气孔表面分形维数的影响更为显著;适当增加基质含量可以增大骨料颗粒间的结合程度,提高多孔透气材料的力学强度,当基质含量在17 wt%时,刚玉质多孔透气材料的机械强度达到最高;继续增大基质含量,多孔透气材料的机械强度又有所减小;在基质含量为17 wt%时,随着骨料粒度的减小,多孔透气材料的常温抗折强度呈增大的趋势,常温耐压强度变化不大。(2)采用强力混合机可以实现对板状刚玉颗粒(1-0.5 mm)进行整形处理,且转速及处理时间是影响颗粒整形程度的关键因素。刚玉骨料经过整形处理后,颗粒的圆形度增大,纵横比减小,堆积密度增大。整形骨料的应用可以降低多孔透气材料的显气孔率,改善材料中骨料颗粒间的结合程度,进而提高材料的常温抗折强度和常温耐压强度;整形骨料的使用可以提高多孔透气材料中骨料堆积气孔的结构稳定性,增大了骨料堆积气孔的尺寸和体积分数,降低气孔表面分形维数,降低气体在多孔透气材料中的气体渗流阻力,提高渗透系数。(3)在结合界面中原位生成适量的六铝酸镧和六铝酸钙均可提高刚玉质多孔透气材料的力学强度,六铝酸镧的原位生成对机械强度及渗透系数的提升更为显著。原位生成六铝酸镧对刚玉质多孔透气材料的增强机理主要在于活化烧结、细化氧化铝晶粒及板片状功能相对裂纹的偏转和分支作用。适量六铝酸钙的原位生成可以弥合骨料和结合界面处的微裂纹,提高多孔透气材料的力学强度,然而六铝酸钙生成对多孔透气材料的烧结始终起着阻碍作用,故而对材料机械强度的提升不明显。在刚玉质多孔透气材料中适量引入六铝酸镧和六铝酸钙均可增大骨料堆积气孔的尺寸和相对体积分数,降低气孔表面分形分数,从而提高气体在多孔透气材料中的渗透系数。(4)采用金属直接氧化结合工艺在较低热处理温度下制备了具有较高强度的刚玉基颗粒堆积型多孔透气材料。添加纯Al粉时,高温热处理后,多孔透气材料中的金属Al粉会在原位形成氧化铝空心壳状遗态结构,这种结构不仅不利于提高多孔透气材料的力学强度,还会堵塞骨料堆积气孔,增大气体渗流通道的复杂程度,降低气体气体渗流系数。Al/Si的复合引入会降低材料中小气孔(≤7.84μm)的体积分数,增大多孔透气材料中骨料堆积气孔的尺寸和体积分数,降低气体气体渗流阻力,显著增大多孔透气材料中的气体渗流系数。(5)采用灰色关联理论分析了气孔结构参数与气体渗流系数k1和k2的相关系数。研究表明:气孔表面分形维数和显气孔率是影响气体渗流系数k1的关键因素;气孔结构复杂程度对k2的影响更甚于显气孔率,中位径越大和骨料颗粒堆积气孔的相对体积分数越高,气孔表面分形维数越小,k2越大。在粘性流条件下,多孔介质中气体流量的预测模型分别为:(?)考虑气体的可压缩性);忽略气体的可压缩性时,(?)。(6)多孔透气材料的物理水模型研究表明:气体经多孔透气材料进入水中可以形成大量尺寸均匀的气泡群,随着气体流量的增大,所形成的气泡尺寸越大,气泡数量也越多。多孔透气材料中气孔尺寸越小,相同流量下所形成的气泡数量越多,气泡尺寸越小,且当气体流速较高时,气泡间的“合泡行为”更为显著。