切换导航
文档转换
企业服务
Action
Another action
Something else here
Separated link
One more separated link
vip购买
不 限
期刊论文
硕博论文
会议论文
报 纸
英文论文
全文
主题
作者
摘要
关键词
搜索
您的位置
首页
学位论文
一类具有暂时免疫传染病模型的定性分析
一类具有暂时免疫传染病模型的定性分析
来源 :东北师范大学 | 被引量 : 0次 | 上传用户:laobo999
【摘 要】
:
本文应用动力系统分支理论的方法,研究了一类具有暂时免疫传染病模型的Hopf分支和同宿分支.证明了Hopf分支的存在性,计算出了决定分支方向及稳定性的参数条件.最后,给出了同宿环
【作 者】
:
宋贽
【机 构】
:
东北师范大学
【出 处】
:
东北师范大学
【发表日期】
:
2006年01期
【关键词】
:
SIRS模型
Hopf分支
同宿分支
极限环
下载到本地 , 更方便阅读
下载此文
赞助VIP
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文应用动力系统分支理论的方法,研究了一类具有暂时免疫传染病模型的Hopf分支和同宿分支.证明了Hopf分支的存在性,计算出了决定分支方向及稳定性的参数条件.最后,给出了同宿环分支出极限环的条件,证明了极限环的惟一性.
其他文献
一维六方准晶有限板裂纹反平面问题的边界配置法
在现代工程技术领域中,准晶弹性理论是当今社会研究的热点.由于准晶材料的特殊性能,人们对准晶材料的弹性和断裂问题展开了系统研究。本文利用边界配置法研究一维六方准晶有限
学位
一维六方准晶
弹性力学
断裂问题
反平面剪切
边界配置法
缺失数据统计方法及其敏感性的研究
缺失数据是统计分析中普遍存在的问题,传统数据分析方法不能直接应用到缺失数据,因此对于缺失数据统计方法的研究成为热点问题。缺失数据分析方法分为三类:似然方法,加权方法和归
学位
缺失数据
逆概率加权
统计分析
多重归因估计
分裂平衡不完全区组设计
分裂平衡不完全区组设计(splittingBIBD)是Ogata,Kurosawa,Stinson和Sa/do【w.Ogata,K.Kurosawa,D.R.StinsonandHSaido,Newcombinatorialdesignsandtheirapplicationst0authenticationc
学位
分裂平衡不完全区组设计
k-分裂认证码
分裂可分组设计
非线性分数阶Volterra积分微分方程的小波数值解法
分数阶微积分的理论和模型广泛地应用在热传导现象、分数阶控制器设置、人口模型等领域中,从而使得分数阶微积分相关研究得到了蓬勃的发展,很多领域中的现象可以用分数阶积分微
学位
Volterra积分方程
Legendre小波
分数阶算子矩阵
误差分析
其他学术论文