【摘 要】
:
石油、天然气、煤炭等地下矿产资源对于我国的工业发展起着至关重要的作用。目前我国的矿产资源开采区域正在逐渐扩大并且逐步提高开采效率及质量。瞬态脉冲井中雷达作为一种十分有效的探测地下资源分布的工具得到越来越广的应用。作为瞬态脉冲雷达的一类分支,井中雷达能够深入地下矿井中,主要解决井周物质的分布问题,且具备实现超前探测的优势。传统的井中雷达采用的系统接收机、数据采集板、数据传输采用分离式的架构,接收机接
论文部分内容阅读
石油、天然气、煤炭等地下矿产资源对于我国的工业发展起着至关重要的作用。目前我国的矿产资源开采区域正在逐渐扩大并且逐步提高开采效率及质量。瞬态脉冲井中雷达作为一种十分有效的探测地下资源分布的工具得到越来越广的应用。作为瞬态脉冲雷达的一类分支,井中雷达能够深入地下矿井中,主要解决井周物质的分布问题,且具备实现超前探测的优势。传统的井中雷达采用的系统接收机、数据采集板、数据传输采用分离式的架构,接收机接收的信号经过电缆传输至数据采集单元进行采集。这种系统架构的集成度低,信号在传输过程中衰减较大且易受电磁干扰的影响。井中雷达由于在地下移动速度缓慢,传统采样方案为等效采样,即将目标信号等效为完全相同的脉冲信号,忽略了实际信号存在随机抖动特点,因此设计一种能够解决该问题的井中雷达数据采集与处理系统十分必要。本次设计了一种超宽带接收机、高速数据采集、数据处理与传输系统一体化的设计方案,解决了分离式设计中的系统稳定性弱、集成度低、抗干扰能力弱的问题。传统井中雷达接收机的设计主要包含低噪声放大器、射频开关、衰减器。不同于以往通过射频开关的切换调整放大倍数的设计,本文设计了一种射频开关、低噪声放大器和可编程放大器相结合的井中雷达接收机设计方案,步进增益精确为2d B。同时可编程放大器的使用能够自动调节系统的增益,解决了信号增益饱和问题。为了避免等效采样中信号随机抖动的影响,本文设计了一种基于FPGA的井中雷达实时数据采集与数据处理逻辑系统,实现了对中心频率为50MHz的高斯脉冲信号进行实时采集。核心器件采用了高速模数转换器件:双通道500Mbps,精度为12位,具有十分优良的线性积分偏差与线性微分偏差特性,满足实时采集的系统需求。为了克服信号远距离传输中的衰减以及提高信号的传输速度,本文针对实时采集要求采用了光纤传输模式。系统采用的光纤传输速率最高可达6.25Gbit/s,最大限度的满足数据远距离低衰减高速传输;并在系统中增设了4G片外存储,数据交互带宽达到25.6Gbit/s。并将传统的电缆供电优化为电池供电,提升了系统的可移动性,实现了小型化,能够适应更加复杂的工作环境。最终测试结果表明电源系统能够提供稳定的功率输出,系统总功率达到5.8W,数字系统和模拟系统均工作稳定。为ADC提供采样时钟的锁相环芯片与FPGA参考时钟芯片均能稳定的输出低抖动、高相噪的时钟。接收机系统、采集系统、存储系统及数据光模块传输系统均能够正常工作并实现设计目标信号的接收、采集、存储与数据传输,说明了该接收与采集集成方案具有可行性与实用性,为后续井中雷达系统的设计与实现提供了一种新方案。
其他文献
近年来,类液态Cu2-xSe基热电材料因其热电性能优异,且组成元素无毒无害而受到广泛关注。然而,该类材料随温度变化而发生的物相变化及类液态Cu离子在外场作用下长程迁移造成元素析出等现象,导致其稳定性较差,阻碍实际应用。据报道,类液态Cu2-xSe材料的稳定性及热电性能与Cu空位浓度密切相关,适当的Cu空位能有效抑制相变且增强材料的服役稳定性。然而,过量Cu空位导致材料本征载流子较高、热电性能较差。
太赫兹(THz)波是指频率在0.1~10 THz(波长3000~30μm)范围内的电磁波。太赫兹波段能够覆盖许多物质的特征谱,并且可以利用特征谱的特点研究一些基础科学问题。太赫兹波作为一种还未被广泛应用的、潜在应用价值巨大的、具有独特优势和战略意义的电磁波频段,将为科技进步、经济建设、社会治安和国家安全提供有力支持。真空电子器件是一种稳定且能高效率产生电磁波的源器件,具有非常重要的作用。扩展互作用
毫米波一直是雷达、遥感、成像和安全等领域的研究热点,近几十年来,为了满足人们对高数据速率、大通信容量和一些潜在应用的需求,对高频器件的研究得到了迅速发展,对用于卫星接收机系统、未来个人通信系统和毫米波雷达的毫米波电路的开发提出了更高的要求。变频组件作为毫米波雷达的关键组成部分,影响着整个系统性能的好坏,起着至关重要的作用。本文围绕设计指标展开说明,结合教研室车载雷达项目需求,综合设计了一款用于毫米
回旋管是具有最高输出功率记录的快波器件,在空间通信、热核聚变与医疗诊断方面受到广泛的关注,伴随着其工作频率的增加,回旋管将大幅提升对磁场的需求,采用高次谐波有助于降低工作磁场,但同时也会加剧模式竞争。与传统的热阴极相比,场致发射冷阴极几乎能够支持瞬态开启,满足超紧凑的设计要求以及工作在室温条件下。基于碳纳米管(CNTs)冷阴极的电子发射源已被广泛证明具有高电流密度、优异的化学和热稳定性、低开启电压
随着在医疗监测和能量采集等领域的突出表现,柔性电子技术引起了人们的广泛关注。由于其柔软的特性,可运用在皮肤表面等,实现电子设备的可穿戴,为一些应用提供大量的新功能。可穿戴设备领域发展的一大趋势就是柔性光电传感器的使用。其中,基于GaSe/MoS2异质结的光电探测器可借助于其材料优异的光电特性和异质结的辅助,实现从可见光到近红外光的高性能探测。然而现有的基于GaSe/MoS2异质结的光电探测器大多基
GaN材料作为宽禁带半导体,具备优良的材料特性,被广泛应用于功率半导体器件中,具有较高的研究价值。国内外GaN基功率二极管的相关研究表明,目前GaN基功率二极管中存在结边缘电场集中效应以及电场非均匀分布的问题,严重制约了GaN基功率二极管的耐压提升。本文针对GaN基功率二极管的耐压结构和温度特性进行了深入研究,取得的研究成果主要如下。首先,为解决GaN基功率二极管中存在的电场非均匀分布的问题,本文
现代雷达以及电子对抗系统的不断发展,促使着电磁波的使用频率在低频端向P波段扩展,吸波材料的应用在P波段已越来越广泛。反射率是衡量吸波材料性能好坏的重要微波指标,其值与所处环境温度、电磁波的入射角以及电磁波的极化方式等都有着密切的关系。常见的吸波材料在P波段的反射率在-20d B左右,但此数值在不同的电磁波波段、入射夹角和极化形式下,浮动将会更加明显,特别是尖锥形的吸波材料,在频率较高时或较大入射角
随着5G时代的到来,能够使用的通信频带资源已经非常有限,工作频率不断增大,要能在狭小的通频带间进行信号的传输,对滤波器的功率容积和过滤性能提出了更加苛刻的要求,而且由于安装空间有限,对滤波器的尺寸也有了更高的要求。所以基于谐振腔的紧凑型微波滤波器的设计是极具应用价值的。本课题主要在电磁扰动理论,调谐理论以及微波腔体滤波器理论的基础上,开展了基于谐振腔的紧凑型微波滤波器设计,通过采用介质和电容加载的
现场可编程门阵列(Field Programmable Gate Array,FPGA)由于其特有的可编程特性,十年前在航空航天、工业、汽车等领域具有广泛的市场。如今FPGA的市场规模仍在不断扩大,开始在人工智能、机器学习、视频处理、大数据处理等领域发挥作用。FPGA是由比特流进行编程配置来实现不同的功能,储存配置比特流可以用几种不同的技术来实现,分别是SRAM、反熔丝与Flash。本文讨论的是F
随着无线技术的飞速发展,基于5G应用的毫米波技术研究变得越来越广泛且流行。为了满足5G甚至6G通信系统的高数据传输速率要求,毫米波通信系统应具有实现波束形成和扫描的能力,所以毫米波相控阵系统被认为是下一代通信系统。而开展基于CMOS工艺的毫米波幅相控制模块的设计与研究,对于提高毫米波电路性能、降低系统成本、推动民用毫米波相控阵系统的开发与应用都具有巨大的学术价值与潜在的市场价值。首先本文介绍了相控