李代数so*(2n)和g*(m,S,C)的性质

来源 :东北师范大学 | 被引量 : 0次 | 上传用户:pgglankejianxin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要研究了两类典型的李代数即李代数so*(2n)和g*(m,S,C),首先介绍了一些李代数的基本知识,并且给出了这两类李代数的组成结构,然后从这两类李代数的本质(即基底)构成出发,研究它们的一些典型性质,分别讨论了它们的维数,中心,换位子代数,Killing型,Cartan子代数,结构公式,根系等。 本文主要证明了以下定理: 定理Aso*(2n)的中心是0,g*(m,s,C)的中心为{aiIm|a∈R}。 定理Bso*(2n)和g*(m,S,C)都不是单李代数。 定理Cso*(2n)的换位子代数就是其本身,g*(2n,S,C)的换位子代数为
其他文献
这篇文章通过构造子Dirac算子,研究子Dirac算子平方的绝热极限以及计算数量曲率的绝热极限,运用Lcherowice公式以及指标定理,得到了推广的A.connes的消无定理。做类似的讨论,对于c
周知,分布理论是概率论的基础之一,而且它在随机游动,从而在风险理论,排队系统,Levy过程,分支过程等领域有重要的应用,因而一直受到人们的关注.而其中的广义长尾分布族是非常宽泛的
迄今为止,无约束的半线性抛物系统的能控性的研究结果已经相当丰富,但是在实际工程问题中,控制能力是有限的,因此研究具有约束的控制问题具有重要的应用价值. 然而关于有约束的
本文主要讨论一种特殊的非线性椭圆方程(方程略)在全空间上解的渐近行为,分两个方面进行讨论:(1)方程的正解在零点和无穷远处的渐近行为;(2)方程的径向对称解在正无穷远处的展开
本文主要研究了复二次映射族的Mandelbrot集和Julia集与已知的复二次映射族f : z→z~2+ c ( c∈C)的Mandelbrot集和Julia集的联系,并且给出了不同参数条件下的这两类复多项式
调和函数是经典复分析的重要内容,并且在许多问题中有着重要的应用。本文将讨论调和函数和拟共形形变以及拟共形映射之间的关系,主要讨论实轴上的Zygmund函数在上半平面有调和
信息安全是一切基于计算机网络的通信活动得以正常运行的前提和基础。公钥基础设施PKI是一套安全服务的集合,为信息安全提供了一个平台,它运用公钥密码的基础理论,为网络应用
学位
我们主要考虑分支理论的数值方法,具体而言,时滞微分方程中Takens—Bogdanov点的数值计算方法.我们给出了时滞微分方程中Takens—Bogdanov点的数值计算方法,这是一项全新的工作,在