生成对抗网络中的优化算法研究

来源 :中国石油大学(北京) | 被引量 : 0次 | 上传用户:crypt2074
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,由于数据量的大幅度增长和计算机硬件水平的提升,以生成对抗网络(GAN)为主体框架的深度学习逐渐成为热点话题,并在很多领域的应用中取得较好的效果。同时,对多元时间序列数据的异常检测,无论在智能运维还是电力或网络系统监测等方面都起着至关重要的作用。基于深度学习的异常检测比传统的机器学习算法更能挖掘出数据中的特征表示,因此将GAN应用于多元时间序列的异常检测是一个非常重要的研究方向。本文工作主要分为三个方面:第一、分析原始GAN及其变体WGAN的原理,给出GAN的最优生成器和最优判别器存在的证明,并利用原始GAN和WGAN进行手写数字生成实验,比较两种生成对抗网络的性能。第二、对GAN的优化过程通过简化模型进行理论分析,发现原始GAN和WGAN在模型训练过程中,振荡地收敛于均衡解。针对GAN优化过程中的训练不稳定和训练崩溃的问题,基于理论分析的结果对损失函数和优化算法进行改进。本文提出(1)改进的基于梯度惩罚的损失函数,可以避免WGAN中的梯度裁剪,且可以在理论上得到稳定收敛的均衡解;(2)基于正弦变化的权重滑动平均随机梯度下降算法,可以起到2正则的效果,缓解了优化过程中的不稳定现象。同时,应用改进优化算法的GAN模型进行手写数字生成实验,实验结果表明基于改进优化算法的GAN在手写数字生成实验中表现较好。第三、应用GAN以及本文提出的改进GAN对多元时间序列数据进行异常检测处理,并与传统的机器学习异常检测方法进行比较。总体上,本文提出的改进GAN在训练中的收敛性、手写数字生成、时间序列异常检测方面取得了较好的效果。
其他文献
火力发电等工业控制领域一直致力于研究历史数据中蕴含的有价值的控制规律,以指导设备运行优化,提高经济效益。但由于工业控制系统组成复杂、参数耦合性较强,针对此类大规模复杂多元的时序控制数据的分析需要结合领域知识进行大量渐进式探索尝试。可视分析技术能够提供灵活的视图交互以支持复杂的数据迭代分析过程,目前已成为此类迭代分析问题的高效探索方法之一。随着对工业控制数据可视分析研究的深入,需要分析的控制过程和参
照相机和光谱仪的功能广为人知。成像光谱仪就是结合了两者的功能,空间信合和光谱信息都可以通过成像光谱仪获得。由于这种性能,成像光谱仪的运用范围非常大。在本篇论文中,主要讨论的是DMD编码成像光谱仪算法的研究,论文的主要安排如下:1.成像光谱仪以及成像光谱仪的分类、应用和研究现状。引出了编码成像光谱仪。DMD编码成像光谱仪是其中一种方式,并简述了其优点。2.数字微镜DMD是编码成像系统的一个重要器件。
LNG接收站的红外热成像监测具有关键设施体积大、场地情况复杂等特点,对红外热成像的数据清洗、异常识别与定位等提出了更高的要求。针对红外热成像监测技术在LNG接收站应用过程中易出现的问题,本文从异常数据清洗、异常监测及识别、异常区域定位及预警三个方面展开研究,提出相应的解决方案,并根据案例分析结果验证了该方法的可行性和有效性:(1)针对监测过程中异物通过镜头前方引发误报警的问题,提出了基于HOG+S
在油气生产过程中,其原材料大多具有易燃、易爆、有毒的性质,同时因为生产过程连续性强、技术复杂、设备繁多等特性,一旦发生事故,不仅会导致人员伤亡和财产损失,同时也会产生巨大的社会影响,甚至会危害到社会公众安全,产生难以想象的经济损失和无法挽救的后果。本文针对油气生产工艺操作过程中可能存在的操作行为失误,建立工艺模拟操作平台,利用视线追踪技术对操作者的异常认知行为进行监控,将眼动数据和眼动热点图像等特
新时期背景下,智能技术的广泛普及,为机械制造行业进一步发展提供了强大的技术支撑,促进机械制造技术愈加成熟,在一定程度上提高了社会生产水平,为国家经济建设奠定了良好基础。基于此,本文将针对新时代背景下我国机械制造与智能制造现状进行分析,深入探索机械智能制造的特点和意义,并对机械智能制造技术展开研究,希望能够为专业人士提供参考、借鉴。
对学生学业进展及影响因素进行可视化与分析有助于优化课程结构和师资配置,改进专业课程教与学的过程,提升大学各专业的教学质量。然而,长时间跨度的离散化学生成绩数据难以直接展现学生学业进展;学生成绩又具有高维多元、时序相关等数据特征,且易受学生自身、课程结构和教师等多因素影响,对分析过程带来挑战。为此,本文面向专业教学的学业进展分析进行可视化与交互设计研究,并开发了可视分析原型系统——APVAS,支持从
手写文本(字符串)识别方法是将手写文本转化为电子文本的技术。近年来随着计算机技术的发展和深度学习方法的兴起,涌现出多种字符串识别方法。它们按照对输入图片的切分思路可以分为两类:基于显式切分(也叫过切分策略方法,over-segmentation)的字符串识别方法和基于隐式切分(也叫无切分策略方法,segmentation-free)的字符串识别方法,两种方法其各有优缺点。本文拟融合两种方法,利用这
油藏生命周期是指油田从勘探、开采、加工、储存和运输到销售的所有业务和数据。随着油田长期开采和注水开发的深入,特高含水油田的高耗水层不断发育,导致油田开采效率低下,不利于提高原油采收率,大大增加了成本。因此,立足于油藏生命周期的全过程,研究如何改善高耗水层油藏的开发、提高油田采收率对我国石油行业具有十分重要的意义。针对油田高耗水层普遍发育、开采效率低下的问题,本文以孤东油田历史数据为研究对象,展开了
我国石油企业经历多年的安全管理存储了大量的安全管理文本数据,由于这些文本数据种类繁多,而且是非结构化数据,本文旨在找出隐藏在大量安全管理文本数据中企业的管理短板及安全隐患,降低企业风险,提升企业的安全管理水平。本文针对非结构化的文本数据,采用分词、词性标注等文本挖掘技术,结合关联规则算法,构建一种针对石油企业安全隐患文本数据的挖掘方法,找出安全隐患及漏洞,并编制了面向石油化工领域的文本挖掘软件。(
近年来随着国家加大环保治理力度,颁布了新的工业污染物排放标准,对于原油炼化企业催化裂化装置的达标排放提出了更高的要求。大数据时代下,需要切实提升监测手段,结合机器学习方法进一步挖掘和发挥污染源在线监控系统作用,减少或避免环境污染事件及其他重大环境问题的发生。污染排放数据在采样、传输与存储过程中,会受多种因素影响而产生异常值。为避免异常值对后续数据分析与预测的影响,数据清洗是必不可少的重要环节。本文