论文部分内容阅读
为提高煤炭资源回收率,小煤柱开采工艺逐渐成为中厚煤层开采的主要采煤方式。巷道掘进以及工作面回采过程中,小煤柱在集中应力与采动应力叠加作用下,结构强度大幅降低,渗透率与漏风强度则显著增大,导致瓦斯超限爆炸或煤自燃等灾害危险性升高。对小煤柱以及邻近老空区破碎带进行有效封堵是防治小煤柱瓦斯与煤自燃灾害的关键,但目前矿井常用的水泥或黄泥等封堵材料凝固风干后易收缩皲裂且不具有煤自燃化学阻化特性,未能实现瓦斯与煤自燃灾害的协同防治。因此,针对上述问题,本文分别从小煤柱内部应力及塑性损伤范围演化规律、小煤柱裂隙发育对瓦斯与煤自燃复合灾害的影响机理、阻化封堵材料优选与制备、阻化与封堵性能测试以及现场工程应用试验等方面开展研究,揭示了小煤柱裂隙演化诱导瓦斯与煤自燃复合灾变机理并研制出兼备阻化与封堵特性的阻化封堵材料。获得的主要成果如下:(1)基于现代计算机数值模拟技术,采用FLAC3D数值模拟软件,分别从横向与纵向两个层面分析了小煤柱两侧巷道掘进以及工作面回采过程中峰值应力的动态演变规律,确定了煤柱塑性损伤范围,并以此为基础推演出小煤柱内部裂隙的动态发育过程以及重点损伤区域。采用ANSYS Fluent数值模拟软件仿真模拟了小煤柱裂隙发育过程中气体在小煤柱、工作面采空区以及邻近老空区内部的运移规律,揭示了小煤柱裂隙发育对煤自燃与复合灾害的影响机理,并对比分析了小煤柱与邻近老空区注浆前后煤自燃与复合灾害危险区域面积,明确了小煤柱注浆封堵工作对防治灾害的必要性。(2)针对单一的物理或化学阻化剂存在的优点及缺陷,提出将两者有机融合制备兼顾阻化与封堵双重特性的阻化封堵材料的概念。在材料选择方面,优选出兼具物理阻化与密封堵漏性能的高水材料作为物理阻化成分,并测试了其基础性能。同时,选择以多元受阻酚型抗氧剂为主抗氧剂、亚磷酸酯抗氧剂为辅抗氧剂制备而成的协效抗氧剂作为化学阻化成分,通过实验测试确定主、辅抗氧剂最优摩尔配比为5:2,并测试了其化学阻化性能。最后,将高水材料与协效抗氧剂进行复配,通过煤自燃模拟实验以及单轴抗压强度测试,得到了既满足材料阻化性能又兼具较强结构强度的协效抗氧剂与高水材料最优质量比为1:8。(3)通过电子自旋共振波谱仪(ESR)、傅里叶变化红外光谱仪(FTIR)、气相色谱仪(GC)等仪器与煤自燃模拟试验系统联用,从自由基、官能团和标志性气体三个层面揭示了新型研制的阻化封堵材料抑制煤自燃的阻化机理,并与黄泥和Mg Cl2等传统阻化材料进行了对比测试分析,结果表明:阻化封堵材料可以动态清除煤自燃过程中产生的新生自由基,显著降低煤体内部自由基浓度;此外,阻化封堵材料还可以降低煤氧复合反应速率以及官能团自化学反应速率,进而实现抑制或延缓煤体自然氧化功能;同时,阻化封堵材料兼顾物理阻化与化学阻化特性,能够在全温度段保持较高阻化性能,显著优于只具备物理阻化特性的水泥与黄泥。(4)从宏观和微观两个方面探究了阻化封堵材料的裂隙发育特征,并对比分析了其与水泥、黄泥等材料在裂隙发育方面的异同点;通过试验测试结合理论分析,揭示了阻化封堵材料的封堵机理,并对其渗透性和堵漏风性能进行了测试。结果表明:阻化封堵材料内部结构较为致密,自然凝固风干过程中锁水能力较强,失水率较低,使其表面裂隙的尺度与数量均小于相同培养时间时的水泥和黄泥;此外,阻化封堵材料流动性好,渗透率高,能够深入封堵破碎煤体内部的裂隙与空隙,降低破碎煤体两端气体交换频率与漏风强度;同时,通过与水泥和黄泥的漏风对比测试实验,可以得到阻化封堵材料的封堵性能更强、封堵有效时间也更为持久。(5)以华阳集团一矿81303小煤柱工作面为试验工作面,考察了阻化封堵材料在该工作面瓦斯与煤自燃复合灾害的防治效果。试验结果表明:阻化封堵材料浆液注入小煤柱及邻近老空区煤体裂隙中后,短时间内迅速结晶凝固,有效封堵裂隙减少漏风,使得压差显著增加,O2浓度显著降低;同时,阻化封堵材料兼具对煤自燃的物理与化学阻化效果,使其能长效抑制破碎煤体煤氧复合反应的进行,结合其优异的封堵性能营造的低氧环境,最终使得邻近老空区内破碎煤体自燃进程长期处于初始阶段,基本不具备自然发火危险性。该研究对保障小煤柱工作面回采安全以及提升瓦斯与煤自燃复合灾害协同防治能力,具有重要的理论和现实意义。该论文有图89幅,表41个,参考文献204篇。