论文部分内容阅读
表面等离子体共振光学现象在分析生物材料和环境检测方面有着广泛的应用。SPR传感平台通常是基于Kretschmann结构的,由高导电金属(常见的是金或者银)薄层覆盖在棱镜表面组成。相比于空间棱镜结构的SPR传感设备需要流体处理系统给传感探头送样,光纤SPR传感探针具有小型化,可以直接浸泡在待测溶液中的优点。但光纤SPR传感器尚未商业化,存在灵敏度低、共振入射角度调节困难、实现多通道测量困难等问题。本论文利用将光路和光器件集成至单根光纤中,形成一系列新型、微型、特种光器件的纤维集成光学核心思想,开展多芯光纤SPR传感器探索,围绕单模光纤SPR提高灵敏度,利用研磨技术调节动态范围,多芯光纤SPR波分时分复用技术实现多通道测量等亟待解决的光纤SPR问题进行研究:1.制作多模光纤SPR探针,搭建光纤SPR实验测试系统。研究发现多模光纤中的入射光角度不易受控制,共振曲线相当于多个角度激发的共振曲线叠加而成,影响传感器的灵敏度和精度。进行了单模锥角结构SPR探针验证性实验,首次提出一种实用型单模光纤SPR传感器——单模光纤锥角结构SPR传感器,大幅提高光纤SPR传感器灵敏度。通过改变研磨角度调节SPR光源入射角,从而调节光纤SPR传感器的灵敏度与动态范围规律。在此基础上,提出双芯光纤端面反射式SPR传感探针,并将此传感器与微流芯片复合,实现对微流通道中流动液体折射率的实时监测。制作的光纤SPR传感器灵敏度达5213nm/RIU。2.光纤SPR波分复用技术研究。(1)透射式:提出基于偏芯光纤的分布式级联SPR传感器。两级研磨角度分别为9°和17°时,该系统在折射率1.333-1.385范围内,平均灵敏度分别达2826nm/RIU和4738nm/RIU。(2)反射式:提出双芯光纤锥形反射分布式SPR传感器。将锥尖两传感斜面研磨成不同的角度,形成反射分布式光纤SPR传感器。将其复合封装在针头中可方便的插入血管,进行活体在线监测。用弹性微流控材料PDMS制作了模拟血管及血管外组织的微流控器件,进行模拟测试。3.首次提出多芯光纤利用时分复用技术的多通道SPR传感器。(1)透射式光纤SPR时分复用技术:多芯光纤的每个纤芯作为一个传感区域,通过分别对每个纤芯的注光,实现每个纤芯对应传感区的独立多通道传感。(2)反射式光纤SPR时分复用技术:在七芯光纤端面通过光纤研磨技术将多芯光纤加工成对称的三对锥角结构,从而形成三通道反射式多通道SPR传感器。4.光纤SPR多通道混合技术研究。(1)首次提出并制作双芯光纤四通道SPR传感器,双芯光纤利用时分复用技术(并联)分成两路,然后在每路上利用波分复用技术(串联)实现双通道。(2)多芯光纤时分复用技术多通道光纤SPR传感器,在接收光纤上再制作一级传统透射式光纤SPR传感探针,将波分复用技术和时分复用技术结合后,可将多芯光纤的通道数量增加一倍。(3)深入研究膜厚对光纤SPR灵敏度及动态范围的影响,通过将单模光纤锥角结构SPR反射光注入125 μm阶跃折射率塑料包层光纤,并在塑料包层光纤上制作透射式光纤SPR传感器,实现光纤SPR分布式传感器,两级SPR传感器分别通过研磨角度和镀制膜厚改变即可连续调节SPR动态范围,克服了分布式光纤SPR传感器难于在有限波长检测范围内产生两个易于区分的共振谷的难题。综上所述,本课题提出实用的单模光纤SPR探针,有效提高了光纤SPR灵敏度;对光纤SPR波分复用与时分复用技术进行研究,首次提出多芯光纤实现SPR波分与时分复用方案并进行验证,推进光纤SPR多通道实用技术的发展;首次进行混合技术的光纤SPR多通道技术研究;利用PDMS制作微流芯片与多芯光纤SPR探针复合进行模拟血管测试。纤维集成SPR传感器可在单根光纤上集成多个SPR传感器,有效解决光纤SPR传感器灵敏度低、共振入射角度调节困难、实现多通道测量困难等问题。