论文部分内容阅读
目前我国拥有庞大的输电网络,电力系统的远距离输电能力和运行电压等级不断提高。而高压输电线面临的最大挑战就是高压输电线覆冰,轻则引起相位线闪络,重则导致电塔倒塌。面对高压线覆冰,常采用人工敲击除冰、大电流热力融冰、激光除冰、化学除冰等除冰方法,且以上除冰方法在技术、能耗、成本和安全性等因素的制约下具有一定的局限性,同传统的除冰方法相比,采用机器人对高压线路进行除冰具有无人员伤亡、无需转移负载和停电等优点。因此,研发一种适用于四分裂高压线且具有高度自主导航及越障能力的除冰机器人具有重要的研究意义和使用价值。 本文采用理论计算与虚拟样机仿真相结合的方法,围绕机器人关键技术、总体结构设计与虚拟样机建模、结构参数优化、机器人运动特性、柔性高压线条件下机器人的刚-柔耦合以及基于Labview的机器人操控系统设计等方面开展了研究工作。 首先,结合四分裂高压线的组成及其参数与机器人的设计指标,在对机器人系统组成与关键技术研究的基础之上,提出了一种具有越障能力的四分裂高压线除冰机器人总体结构方案,包括:除冰机构、越障机构、中间辅助机构以及重心调节机构等。根据机器人各约束条件建立了优化数学模型,通过一维搜索方法对机器人中间辅助机械臂长度、机器人机械臂的大臂与小臂长度进行了优化设计,并求得最优解。 其次,研究了机器人的运动特性。通过对机器人驱动力与其空间姿态关系的分析,确定了机器人运动过程中的最佳姿态为水平状态,即机器人空间姿态角β=0°时,机器人的驱动力最大。机器人在运动过程中为了保持水平姿态需要不断调整,通过数值计算与对比,最终确定了驱动轮的调节方式为匀速调节,机械臂的调节方式为变速调节。机器人在越障过程中,重心调节机构需要实时调整重心位置,使机器人保持平衡,仿真结果显示:前端机械臂完成越障任务时,重心调节距离最大,且在爬坡过程中重心调节最大距离随着高压线坡度角的增大而减小。 再次,对柔性高压线条件下机器人工作过程稳定性进行了分析。通过有限元对高压线进行模态分析并获得其低阶模态云图,并对机器人进行动力学仿真,仿真结果表明:无论是在风载作用下还是悬挂在柔性导线上越障过程中,机器人的工作稳定性与机器人自身稳定性均满足工作需求。 最后,设计了基于Labview的机器人操控系统。根据机器人的实际操控过程确定了机器人的操控系统总体架构与各控制界面,并对各控制界面进行详细设计。通过模拟实际操控过程,对操控系统进行了仿真,通过仿真验证了操控系统能够正常进行数据通信,并对接收的数据进行处理,以图形的形式显示,达到了对机器人工作状态的实时监测,给操控者的操控提供依据。