【摘 要】
:
随着人类社会的发展,城市里的摩天大楼日益增多,使得原本开阔的户外环境变得越来越复杂。当卫星信号在高楼林立的室外或环境复杂的室内传播时,信号在遇到遮挡物后发生一次或多次反射,会产生非常严重的多径效应,导致卫星导航系统定位精度很低,甚至定位失败。然而,人们一天有80%的时间处于室内,十分迫切地需要获取室内的位置信息,因此,室内定位技术蓬勃发展。目前,常见室内定位技术有伪卫星、蓝牙、Wi Fi、RFID
论文部分内容阅读
随着人类社会的发展,城市里的摩天大楼日益增多,使得原本开阔的户外环境变得越来越复杂。当卫星信号在高楼林立的室外或环境复杂的室内传播时,信号在遇到遮挡物后发生一次或多次反射,会产生非常严重的多径效应,导致卫星导航系统定位精度很低,甚至定位失败。然而,人们一天有80%的时间处于室内,十分迫切地需要获取室内的位置信息,因此,室内定位技术蓬勃发展。目前,常见室内定位技术有伪卫星、蓝牙、Wi Fi、RFID等方案。其中,伪卫星系统可以在任意有定位测量需求的区域进行布设,覆盖范围广,最重要的一点是伪卫星系统可以联合卫星导航系统实现室内外无缝定位,这是其他技术无法完成的。基于伪卫星系统的优势,本文对分布式伪卫星的室内定位系统进行研究与实现,主要的研究包括以下几点:(1)深入研究了伪卫星系统发射机的C/A码、载波生成以及信号调制的原理,用户接收机的捕获和跟踪原理,并分析了跟踪阶段中的载波环、码环以及系统输出的原始观测量;对系统采用的TDOA定位算法的原理和Chan数学模型进行分析,还重点研究了系统中存在的伪卫星发射机载波相位不同步引起的系统定位结果漂动的问题以及远近效应问题。(2)针对伪卫星系统定位结果漂动的问题,进行了一系列对比测试实验并分析了实验结果。根据分析,设计了一套伪卫星发射机的载波相位修正环路,并在FPGA+DSP的硬件平台上实现该环路;介绍了载波相位修正方案、处理反馈的伪卫星信号模块以及伪卫星信号再调制模块的设计;最后对系统的时钟进行了约束和分析,为伪卫星室内定位系统提供良好的时序,保证系统时序的稳定性。(3)从信号的功率和信号的相关值两个方面分析远近效应产生的原因,并从相关值方面入手对干扰抵消算法和基于子空间的盲多用户检测算法进行研究;对含有冲击噪声的接收信号先利用分数低阶矩联合M估计对信号中的冲击噪声限幅后,再用增强投影近似子空间跟踪(Epastd)算法完成伪码序列的盲估计;仿真结果表明,使用Epastd算法对处理后的接收信号进行估计,估计结果中冲击分量基本消除且在低载噪比的情况下,对伪码序列的估计效果很好。(4)对本系统生成的伪卫星信号测试验证,并对分布式伪卫星定位系统进行静态和动态测试,经过长时间的测试表明,本文设计的分布式伪卫星室内定位系统在静态情况下定位精度为厘米级,动态条件下定位精度为分米级。
其他文献
近年来电子产品逐步向着高密度方向发展,随着微电子行业的迅猛发展,电子组装工艺对基于机器视觉的检测技术在智能化、自动化等方向的要求也越来越高。在实际工程中贴装设备由于系统长时间工作,吸嘴元件由于受到工作周围环境的影响,可能有灰尘等杂物混入,造成不同程度的吸嘴堵塞。并且可能由于机械摩擦、震动造成损耗,导致吸嘴出现破损、缺失的问题,这可能对吸嘴后续吸取贴片贴装至PCB的能力有较大的影响,可能使贴装精度大
为减少环境问题,在十三五规划中我国将“绿色出行”提上了日程,结合提出的“互联网+”概念,大力发展智能电动汽车。本文从智能电动汽车的关键技术方面研究入手。对于车辆在不同工况下进行轨迹跟踪控制时,由于车辆动力学参数改变,使得轨迹跟踪控制器的自适应性变差,进而导致轨迹跟踪的误差加大;同时对于车辆在低附着系数路面行驶时,由于地面提供的侧向附着力变小,易造成车辆行驶时发生侧滑、甩尾等问题;以及车辆在急加速,
网络故障管理是网络管理系统的核心,在实际网络应用中,故障几乎无法避免,快速检测并准确定位网络故障能够提高网络管理系统的可靠性,保证稳定的网络服务。目前故障检测技术主要分为被动式故障检测技术和主动式故障检测技术,主动故障检测技术灵活性强、扩展性高、适用性好,可以用在各种复杂网络环境下。传统IP网络中的探测路径一般是最短路径,数量少且灵活性差。此外,在检测ECMP网络中的故障时需要发送大量的探测数据包
太赫兹(Terahertz,THz)光谱的指纹特性能够提供生物分子振动信息,这在生物样品检测领域具有重要的应用价值。然而,生物样品与自由空间中传播的THz波发生的相互作用较弱,因此获取的生物样品信号微弱,不能满足微量样品检测的需求。超材料可以有效的增强局域电场,并且它对周围的介电变化十分敏感,这种特性有利于提高生物样品信号。所以超材料被广泛应用于微量样品检测中,并逐渐发展成一种新型传感器件。然而,
随着5G智能设备的普及,无人驾驶、增强/虚拟现实和智慧城市等计算密集型应用高速发展,业务流量飞速上升,其计算需求远超于移动设备的处理能力。为满足计算密集型应用业务的低延时、高质量的计算需求,移动边缘计算(Mobile Edge Computing,MEC)技术应运而生,成为了5G的关键技术之一。边缘服务器将云中心的计算、存储、频谱等资源下沉到网络边缘的终端设备,为附近的用户提供高可靠、低时延的计算
粒子群优化算法(Particle Swarm Optimization,PSO)由于其原理简单且易于实现等特点成为解决复杂优化问题的一种重要方法。然而,这种有效性仅仅体现在低维度的小规模问题中。面对工程应用和科学研究中存在大量需要进行优化处理的高维度的变量,如何进行有效地优化处理成为了大规模优化领域急需解决的一个问题。随着优化问题维度的增加,PSO的优化效果会急剧下降,这一现象称为“维度灾难”。导
由于强度高、易加工的特性,金属薄板广泛应用在各种复杂的工程领域。板状结构由于自身的结构特性,在生产、加工以及运输过程中往往会产生缺陷,对材料性能产生影响,因此对薄板健康状况的检测必不可少。兰姆波层析成像技术采用的超声传感器阵列能够准确地获取薄板中缺陷的位置、大小、形状等缺陷信息,清晰地检测出薄板表面以及内部存在的缺陷。本文主要基于有限元法,研究兰姆波层析成像技术对金属板材进行缺陷重构成像的技术理论
自基于硅的BJT、MOSFET和IGBT引入以来,电磁干扰一直是一个众所周知的问题。由于半导体器件开关动作产生电流和电压突变,电磁干扰噪声是不可避免的。噪声通过导体和空间以传导和辐射的形式传播。随着氮化镓(GaN)晶体管、碳化硅(Si C)BJT和MOSFET等宽禁带器件的发展,可以利用其高开关频率和更大温度范围的工作能力,实现更高的功率密度和电路效率。由于设计更加紧凑,高频下的电磁干扰控制在功能
张量计算是数值代数研究的热点问题之一,它在高光谱图像、计算机视觉、人脸识别的多线图像分析、地震信号、脑电图、医学与神经科学等领域有着广泛的应用.本文主要研究如下结构张量及其相关计算问题.第二章,研究了对称非负张量填充问题.我们首先把该问题转化为核范数优化问题,然后设计交替方向法进行求解,对χ-子问题通过奇异值截断法进行求解,对γ-子问题使用非单调谱投影梯度方法进行求解.给出了交替方向法的收敛性分析
38CrMoAl合金钢因其具有较好的塑性和韧性,强度、硬度较高。常用于制造要求具有高耐磨性、高疲劳强度等运动部件。电子束加热功率密度大,能使材料表面在很短时间内加温熔化,良好的传热基础使得金属表面获得较大的凝固速度,以改善38CrMoAl钢的表面性能,扩大其使用范围。本课题研究采用连续型扫描电子束方法在齿轮钢38CrMoAl表面制备力学性能良好的TiN/Ni合金化层,以期改善其表面强度。本实验利用