论文部分内容阅读
H张量的判定及性质
【机 构】
:
青岛科技大学
【出 处】
:
青岛科技大学
【发表日期】
:
2018年01期
其他文献
加权Lorentz空间和Orlicz-Lorentz空间是Lp空间和经典Lorentz空间Lp,q的重要推广形式,也是重排不变空间的主要表现形式.自从Lorentz空间及Orlicz-Lorentz空间被引进以来,它们一
随机微分系统在很多领域中(如经济、金融、物理、生物、医药等)具有重要的应用。因而关于随机微分系统的理论近年来发展迅速,特别是关于此类系统的稳定性问题,比如p-阶矩指数稳定
上海自贸区的正式成立,标志着中国改革开放进入了新的历史阶段。上海自贸区的改革目标和相关改革措施,能为深圳保税区的转型升级发展所借鉴。总结深圳保税区的发展及问题,以
课程改革逐渐推动了各个学科的发展,语文科目也不例外,初中语文教学中,情境教学又是一种很好的教学方式,它是一种可以在课堂上给学生们提供更多的进行尝试的机会,也能让学生
电子商务的发展呈几何乘数增长,而快递物流的发展呈自然基数增长,快递物流显然不能满足电子商务的服务需求。为加大快递物流业的服务能力,必须建立统筹物流行业信息的社会化
Besov空间包含许多常见的函数空间如Sobolev空间,H(?)lder空间,Zygmund类以及Lipschitz空间等.它的重要性在于描述函数的光滑性以及被用做一些偏微分方程的解空间;由于Besov空间
学位
设Ω是Rn的具有光滑边界的有界开区域.本文在Ω上考虑了具有非线性记忆项的阻尼波动方程
Utt+αu1-△u-∫10μ(t-s)|u(s)|βu(s)ds+g(u)=f,(x,t)∈Ω×R+;
u(x,t)=0,(
学位
传染病动力学是根据疾病发生、发展及环境变化等情况,从而建立能反映其变化规律的数学模型,通过对模型性态的研究来揭示疾病的发生过程,预测其发展趋势,找出疾病流行的原因和关键
本文主要研究了结合代数及双自由模上的Grobner-Shirshov基理论。得到辫子群Bn,Bn型辫子群B(Bn),辫子幺半群B+n,半单李代数sl2上的既约模,Kac-Moody代数上的Verma模及Sabinin代数的