云边端架构下最大化用户收益的新型计算卸载算法研究

来源 :吉林大学 | 被引量 : 0次 | 上传用户:qiangchengshimeng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
5G网络技术和智能设备的飞速发展催生了越来越多高级应用的出现,这些新兴的应用服务往往具有计算密集和延迟敏感等特点,这给计算能力有限的用户设备带来了很大的挑战。计算卸载是解决该挑战的有效方法之一。传统的移动云计算模式是集中式的处理方案,将计算任务卸载至位于网络中心的MCC云服务器上执行,其缺点在于MCC云服务器通常距离用户较远,网络传输延迟大,无法满足应用服务的低延迟要求。移动边缘计算模式允许用户设备将计算任务卸载到部署在网络边缘的MEC服务器上,以达到既满足延迟要求又完成任务执行的目的。然而,MEC服务器的计算资源毕竟是有限的,尤其难以应付大规模计算密集型业务。云边协同计算模式将MCC的强大计算能力和MEC的低延迟结合起来,因此适合处理各种类型的应用服务。无论是哪种计算模式,计算卸载一直都是其中的重点研究问题之一。一个好的计算卸载策略能够将任务卸载到最合适的计算节点,以满足应用服务的各种需求。本文在云边端网络架构下对计算卸载问题进行研究。具体研究工作可概括为以下几点:(1)首先,现有工作的优化目标大都关注时延与能耗的最小化,没有关注用户在计算卸载过程中的收益。用户收益对指导用户设备进行合理的计算卸载有着重要的意义:若用户在当下系统环境中采取某计算动作得到了较大的收益,那么说明该计算动作是匹配当下系统环境的,这将鼓励用户设备在未来相似的系统环境中采取相同的动作选择。故本文提出用户总体收益(the Total User Revenue,TUR)的概念(总体收益涵盖了时间收益以及能耗收益,可用二者加权和表示),并将TUR引入到本文目标优化问题的定义中。(2)其次,本文针对多用户单小区、一云一边垂直协同网络架构下的计算卸载问题,提出一种基于DQN的自适应智能卸载算法BDTUR。该算法可以针对当下系统环境做出最合适的卸载决策,并且可以根据环境的反馈进行自我学习,不断提高决策的准确性。通过仿真实验结果可知,本文提出的智能卸载算法较之于对比算法有更高的用户总体收益。(3)最后,受到5G网络环境中多小区MEC网络架构的启发,本文将MEC服务器之间的水平协同考虑进来,针对多用户多小区、一云多边垂直与水平双协同网络架构下的计算卸载问题,推广BDTUR算法而得到MBDTUR算法。在双协同架构中,计算任务的卸载地点较之于垂直协同架构有更多的选择。根据仿真实验结果可知,MBDTUR算法的表现不仅依旧优于对比算法,并且优于BDTUR算法在垂直架构中的表现。
其他文献
认知障碍是指人体认知功能的损害,根据功能损害的程度不同,可诊断为轻度认知障碍(Mild Cognitive Impairment,MCI)或重度痴呆(Dementia)。由于身体机能及大脑神经的衰退,认知障碍普遍存在于老年人。据科学统计,认知障碍难以治愈,每年影响约1000万人,因此有效、准确的诊断引起了广泛关注。近年来,结合先进设备的3D影像结果和临床认知障碍测试量表结果,医生可以分析得到准确的
随着神经网络的广泛应用,其缺点愈发被发现。由于会产生“灾难性遗忘问题”而无法进行增量学习。近些年来,迁移学习的相关领域发展迅速。迁移学习方法大都注重模型在新任务上的效果,而在过去任务上的效果往往不注重。作为一种特殊的迁移学习方法,增量学习主要任务就是解决“灾难性遗忘问题”。本文将从另一个角度对灾难性遗忘进行解释:神经网络的训练对其数据的分布有很高的要求,如果训练数据不符合目标结果的分布情况,网络将
粒子群算法是由J.Kenned和R.C.Eberhart于1995年提出的一种优化算法,它通过模拟动物种群的行为而设计,其目的是获得最优解。这些群体内部各成员之间通过互相协作的方式去寻找食物,并且群体中的每个成员在搜索过程中都积累一定的经验,粒子群算法就是根据这些个体自身的经验和学习其他成员的经验,来不断的改进搜索方向和搜索进度。粒子群算法具有良好的优化性能,使用简单且应用广泛。美中不足的是,粒子
随着互联网技术的不断发展以及人们生活需求的不断增长,智能网联汽车的概念应运而生。与传统汽车相比,智能网联车的功能更加丰富,需要处理的网络数据量的规模也更加庞大。而传统的车载网络的带宽有限,无法处理大量的网络数据。与传统的车载网络相比,车载以太网具备高带宽、高吞吐量、低成本等优势。目前,许多汽车制造商已逐步应用车载以太网来满足高级驾驶辅助系统应用的运行需求。因此,车载以太网在汽车上的应用前景十分广阔
随着改革开放的脚步不断向前大步迈进深化发展,我国经济发展势头日新月异、迅猛提升,经济的发展紧密了世界各国间的联系,中国逐渐从一个发展中国家向发达国家迈进,物质的供给与物质的储备得到了极大提升,与此同时精神需求日益上涨,文化领域得到了空前的发展,其中电影领域的发展尤为瞩目。中国电影从以往为艺术类电影创作模式转向市场经济化运作模式,发展势头强劲,电影市场的蓬勃发展一方面得益于国家相关部门大力扶持,另一
由于二十一世纪网络的发展与信息量的剧增,各类数据间的关系变得越来越复杂,人们也不得不与大量的数据打交道。因此,当前的世界已经进入了大数据时代。为了能够在杂乱无章的数据海洋中高效的检索和整理出人们所需要的信息,就要对大量的数据进行批量分析和聚类,然后实现对这些不同类型数据的量化处理,并使用某种固定规格的数组或者向量来表示它们,这种表示将会满足后期应用中对数据的统计,检索,推荐以及分类等需求。对这些数
近年来,人们越发看重节能环保,而且随着我国居民汽车保有量的不断提升,国家也出台了一系列政策来对汽车能耗与排放提出了更高的要求。轻量化设计能够有效地实现满足汽车性能要求的同时减少能耗与排放,在实现汽车轻量化的途径中,材料替换是十分有效的方式。钢板弹簧的重量占商用汽车非簧载质量的10%-20%,使用复合材料来将其全部或部分进行替换,一般能够实现至少50%的减重,同时可以进一步改善汽车的行驶性能、减少燃
深度学习在语言翻译,图片识别等领域大力发展,已经在生活中获得大量应用,如机器翻译、人脸识别等。随着5G时代的到来,网速对人的限制越来越小,以及人们产生和发布视频资源的便捷性,都促使视频资源在网络中海量增长。如何利用深度学习算法学习视频信息表达方式和进行网络短视频多模态搜索一直是业界关注的研究领域。与手工制作的动作特征不同,深度学习方法在主动学习图像特征方面表现良好,这为人类动作识别技术提供了一个新
深度神经网络在图像分类任务中取得了不俗的表现,在生产生活场景中有着普遍应用。然而,对抗学习的出现对深度学习模型应用的鲁棒性提出了挑战。对抗学习包括对抗攻击和对抗防御,对抗攻击旨在挖掘人与机器学习模型认知事物的差异,对于图像分类任务来说,即是探索分类模型的决策边界。对抗攻击算法利用这种差异基于干净样本添加对抗扰动构建对抗样本,能够诱导机器学习模型预测错误的结果。由于对抗扰动很微小,人类无法察觉对抗样
随着我国经济金融的高速发展,国内的电子商务迈入迅猛发展的时代,与此同时,物流快递业取得了空前的发展。然而,不断发展的物流行业也给物流的配送方式带来了巨大挑战。设置物流快递代收点是目前族类主要的配送形式之一,尤其是在以年轻人为主体的各大高校。但是,现今的的快递代收点不但种类多、分布散乱,而且要求定点取件过期不候。包裹损坏、快件丢失、个人信息泄露等问题也是经常发生,导致用户对快递末端配送服务的满意度极