面向园区无人驾驶的行人检测与姿态识别研究

来源 :太原科技大学 | 被引量 : 0次 | 上传用户:vrace_zh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
作为无人驾驶的一个重要研究方向,园区无人车具有广阔的应用前景,可以实现无人售货、物流配送、安防巡逻和乘客搭载等多种功能。行人检测及姿态识别是园区无人车辅助驾驶系统的重要算法,有效的行人检测和姿态识别可以优化无人车的决策,保护行人安全。然而,现有的基于深度学习的行人检测及姿态识别方法虽然在精度上得到了显著提升,但其普遍存在网络模型大、计算量大、检测时间长和模型设计复杂等缺点。因此本文对基于轻量化模型的行人检测和姿态识别算法进行研究改进,在确保检测精度的同时缩减网络参数量,本文主要内容如下:针对TinyYOLOv3算法存在的行人漏检率高、检测精度低等缺点,提出改进算法。使用深度可分离卷积替换传统卷积,并对不同层次的特征进行融合,在确保识别精度的同时缩减网络参数量,同时采用CIoU损失对原始的边界框坐标预测损失进行改进,将通道注意力模块融合到特征提取网络中,提高了定位精度和识别准确率,使用数据增强方法避免训练过拟合,并通过超参数优化方法来加快网络收敛速度。使用INRIA和VOC融合的行人数据集进行实验,相比TinyYOLOv3算法,改进后的算法的漏检率降低了23%,网络模型大小降低了5.6M,m AP值提高了12.92%,在缩减网络模型的同时提高了行人检测效果。提出一种多尺度融合的行人检测算法,通过多分支卷积模块对主干网络进行设计,融合不同尺度的信息,使用Mish激活函数对Re LU激活函数进行替换,提高网络的非线性能力,使用三尺度的预测输出,并对不同尺度的输出添加交叉连接来改进FPN结构,加强网络对于小尺度行人的检测效果。相比TinyYOLOv3算法,虽然检测时间略有增加,但网络模型只有17.7M,并且检测精度得到显著提升。对基于人体骨架图片的行人姿态识别进行研究,针对传统卷积神经网络在处理人体骨架数据时容易造成过拟合的问题,提出改进Ghost Net网络的轻量级行人姿态识别算法,实现基于人体骨架图的姿态识别。首先针对人体骨架图片的特点对网络的输入尺寸进行修改,使用5×5卷积核提升感受野,其次为了避免网络过拟合,缩减网络层数和特征层数量,最后将设计的网络与部分经典的网络进行对比实验,实验结果表明本文算法收敛速度快,并且以较小网络参数量取得了较优的检测效果。
其他文献
科技发展速度越来越快,机器人所涉及的领域逐渐增多,从简单的物体搬运到复杂的喷涂、点焊等领域。由于人工成本高以及传统焊接效率低,点焊机器人逐渐替代人工劳作,不仅改善了焊接质量,而且提高了焊接效率。与此同时,对点焊机器人的应用提出了更多的要求,包括机器人在焊点间移动过程中,关节运动保持柔顺平滑,末端位置准确无误的到达指定焊点;传统点焊路径规划不合理,路径规划需具备科学理论依据,才能保证点焊路径规划的合
图像语义分割是计算机视觉中的一个重要研究方向,在自动驾驶、无人机及医疗等领域有广泛应用。传统的图像分割只能根据颜色、纹理和形状等底层特征对图像进行分割,能达到的分割精准性有限,无法满足实际需求。而图像语义分割则是在图像分类的基础上将分类对象由图像转变成了像素点。近年来,基于深度学习的交通场景图像语义分割技术成为一个新的研究热点,受到越来越多学者的关注。起初,基于深度学习的图像语义分割多是通过简单地
实际系统中普遍存在着的不确定性与时滞现象,会降低系统性能甚至引起系统不稳定。因此,研究时滞不确定系统稳定性与控制方法具有重要的理论意义和实际价值。滑模变结构控制对外界扰动及系统参数变化表现出较强的鲁棒性,已经在多类系统中得到了验证。本文以滑模控制理论为基础,结合Lyapunov稳定性定理、线性矩阵不等式和自适应理论分析三类不同的时滞系统,并设计具体控制方案。(1)针对时滞系统中存在的参数摄动和不确
随着制播技术的发展,有声语言在视频中的表达方式愈加丰富,视觉化趋势愈加凸显。多屏时代的媒体环境对有声语言传播提出场景化、情感化和话题性的新要求,本文以文化类节目为例,分析有声语言通过声音、图像、文字、视频等元素的多模态表达对节目表现力的提升作用,进一步探讨文化类节目的多平台传播创新。
随着海洋战略的实施,海工装备是实现海洋强国目标的重要环节之一。在海洋环境的影响下,深海起重机起吊点垂直方向的剧烈运动给起重机海上作业造成严重影响,使得钢丝绳或脐带缆断裂。主动升沉补偿可以减弱该影响。本文从深海起重机主动升沉补偿的控制方法入手,实现起重机深海环境下的安全作业。首先,利用海洋波浪动力学和牛顿第二定律搭建深海起重机的传递函数,将传递函数通过系统方框图建立状态空间方程,为互补滑模控制律的设
现如今,工业机器人之所以在各个工业领域随处可见,是因为其具有高效、节能、环保等优势。在机器人研究领域,工业机器人的轨迹规划一直都是研究热点,其目的是在给定约束条件下,在某些特定点之间,寻找一条光滑、省时节能且低残余振动的关节运动曲线,使机器人以高性能完成不同工作任务。本文主要针对六自由度工业机器人从时间和能量两个方面进行研究,主要研究内容如下:(1)使用旋量理论建立了机器人运动学模型,并对机器人正
交通标志中包含了重要的道路指示信息,由于车辆行驶道路复杂、标志种类繁多等原因,使得交通标志检测与识别成为智能交通和无人驾驶研究的热点问题。交通标志牌长期暴露在室外环境下,容易出现受损、被遮挡等情况,从而使得交通标志检测与识别系统效果较差,不能较好地满足驾驶员所需要的辅助驾驶信息。本文在YOLOv4算法与胶囊网络的基础上,实现了交通标志检测与识别,开展了以下工作:(1)针对交通标志检测中小目标检测效
近年来,光学字符识别(Optical character recognition,OCR)技术得到了非常广泛的应用,其相关算法也在字符检测和识别的运用中逐渐成熟。在工业场景下,铸造工件上的标识字符有着举足轻重的作用,通过标识字符可以查询到整个铸造过程中各个环节的详细信息。如果利用OCR技术去自动识别标识字符将大幅减少人们的工作,提高工作效率。但是在背景与字符低对比度的情况下,传统的OCR技术存在抗
随着科学技术的发展和人民生活水平的提高,人们对车辆自主化及智能化的需求逐渐提高,智能车辆技术也在稳步发展。面对复杂的交通环境,智能车辆将会对其驾驶行为做出自主决策,实现自动驾驶功能。换道行为是最常见的驾驶行为之一,智能车辆的换道行为与驾驶员操作相比,在安全性、舒适性及高效性等方面有明显优势。本文研究工作属于车辆辅助驾驶技术研究范畴,针对动态环境下智能车辆匀速换道行为的决策、规划、执行展开研究,以下
聚类分析是数据挖掘中的主要组成之一,其任务是利用数据内的相似关系,将数据集划分为多个不相关组,并广泛应用在农业、天文学、工业、医学和物理学等领域。密度峰值聚类算法DPC具有识别数据集簇中心点、快速簇分配和实现简单等优点,但存在人为设置截断度量参数、不合适的簇分配策略和无法识别非球形数据集等缺点,上述问题降低了聚类效果。本文对密度计算问题、簇分配问题等进行了研究。其主要研究成果如下:(1)给出一种基