论文部分内容阅读
等离子体与入射电磁波之间相互作用的研究一直以来都是国防和航空航天领域中的重要研究方向。开展电磁波在等离子体中传输与散射等关键问题的研究,对于缓解高超声速飞行器黑障问题、改进现有隐身手段以及研究新型等离子体微波器件等方面,具有重要的现实意义和科学意义。迄今为止,关于电磁波在等离子体中传输问题的基本理论基础已经较为完备,但在一些特殊的等离子体环境中电磁波的传输与散射问题仍然值得我们深入研究。本文主要针对电磁波与等离子体相互作用中存在的一些关键性问题,开展仿真和实验研究工作,探索电磁波在若干特殊的等离子体环境中的传播特点,分析其中出现的电磁波传输、散射现象与等离子体中各个参数之间的关系。本文的研究内容主要从以下四个方面展开:首先,研究了电磁波在永磁体磁化的等离子体流场中的传输特性。通过计算典型飞行器在几个飞行状态(高度)处等离子体流场,获得通信天线安装位置处的等离子体鞘层分布信息,然后根据实验室中测量的永磁体磁场强度分布,利用时域有限差分法计算了电磁波在永磁体非均匀磁化下的等离子体流场中的传输特性。计算结果表明,永磁体磁场对L、S波段电磁波的通信中断确有缓解作用,且左右旋圆极化电磁波的传输特性不仅决定于等离子体分布参数,还与电磁波传播方向和施加磁场方向有关。当永磁体磁场方向垂直飞行器壁面向外时,为了使L、S波段电磁波的通信效果最佳,提出将天线设计成右旋发射左旋接收的形式。其次,研究了电磁波在时变磁化等离子体中的传输特性和通信性能。当通信电波在飞行器外的等离子体鞘层中传输时,等离子体鞘层的时变特性会对通信电波造成寄生的调制效应,从而进一步恶化通信性能。本文通过搭建的宽带实验平台进行实验研究发现,对时变等离子体层施加磁场不仅可以减少与之相关频段电磁波的衰减量,还可以抑制寄生调制效应(相位抖动幅度),从而提高通信性能。通过仿真研究发现,左旋圆极化波在时变磁化等离子体中传输的相位抖动和衰减量都随着频率和磁场的提升而减小,而右旋圆极化波的相位抖动和衰减量除了与频率和磁场有关以外,还与对应频率所处的传播区位于低通区还是高通区有关,重点关注了右旋圆极化波在低通区的传播特性,发现其相位抖动的幅度随着频率的升高而增加,随着磁场强度的增加而减小。再次,针对尖锥形飞行器头部形成的类似半球形、电子密度较高但厚度较薄的等离子体鞘层,研究了厚度在L、S波段电磁波亚波长范围内的等离子体鞘层对电小天线辐射特性的调控作用。总结了亚波长等离子体球鞘的电子密度、厚度和碰撞频率对电小天线辐射特性的影响规律。研究发现电小天线在亚波长尺度等离子体球形鞘层中的谐振频率与等离子体频率近似按照1/1.9线性规律变化,辐射增益随碰撞频率的增加而减小。同时,还研究了电小天线在能够满足正常谐振条件时,电小天线尺寸、等离子体鞘层尺寸和电子密度的变化范围余量。提出了利用电小天线组阵来提升等离子体电小天线增益的方法并进行了仿真计算,仿真结果初步证明了组阵可以有效地提升电小天线的增益。最后,研究了丝状等离子体放电演变过程以及电磁波入射到丝状等离子体阵列后的传输和散射特性。通过高压直流脉冲在低气压空气中产生了高密度的丝状的等离子体阵列,在对丝状等离子体阵列进行诊断中发现等离子体直径在放电进程中会经历收缩和扩张两个阶段,根据丝状等离子体直径和其他放电参数计算了平均电子密度和碰撞频率,发现平均电子密度可以达到1021m-3且随着放电的进行先增加后减小。随后设计了相应的实验研究了丝状放电等离子体阵列演变过程中垂直和水平极化微波的传输特性。通过仿真计算丝状等离子体阵列对电磁波的散射特性得出,丝状等离子体阵列对垂直极化电磁波的前向散射要低于水平极化,这和实验结论比较吻合。此外,还研究了丝状等离子体阵列覆盖下金属平板对两种极化入射电磁波的散射特性,结果表明垂直极化的入射波背向散射会大幅降低,和无等离子体时相比减小了近27dB,而水平极化入射波背向散射变化不明显,这些结论可以为火控雷达天线的丝状等离子体隐身提供参考。综上所述,本文针对电磁波在几种特殊的等离子体中传输和散射等关键问题,开展了仿真和实验研究,得到的结论可以为缓解黑障问题和研究新型等离子体隐身技术提供参考和理论支撑,对探索丝状等离子体阵列的新应用具有重要的意义。