论文部分内容阅读
低轨卫星是未来卫星通信发展的趋势,低轨卫星星座CDMA移动通信系统是卫星通信和地面移动通信发展的结晶。 本文首先研究了低轨卫星星座CDMA移动通信的信道模型,针对卫星通信中常用的统计分布Loo模型,深入地分析了它的功率谱形状,得出其功率谱形状与通常应用的Jakes模型的不同的重要结论,使得采用该功率谱的仿真结果更接近于实际物理信道。 在低轨卫星星座CDMA移动通信中,一般在地面用户的上空会存在至少两颗卫星,由此,本文提出了一种时延发送分集方案,即利用两颗或两颗以上的卫星按照一定的时延向同一地面用户发射相同数据信号,然后深入地研究了在Loo模型的信道中该分集方案选择性合并和最大比合并的性能。通过最大比合并和选择性合并的性能对比,说明了采用最大比合并的系统性能和系统容量都要好于采用选择性合并以Globalstar通信星座为代表的系统。 通过对多径合并控制、系统容量、卫星覆盖率和通信链路处理及分集接收的分析,进一步论证了时延发送分集在低轨卫星星座系统中的应用可行性。 实现分集接收需要在地面移动用户的接收机中采用Rake接收机,针对卫星通信时延大的特点,本文提出时延控制可在一个帧长范围内进行区分合并多径信号的方法,然后根据这种方法可对常用Rake接收机的结构进行改进;针对低轨卫星星座CDMA移动通信信道变化较大的特点,提出在信道衰落较慢时使用WMSA估计方法,而在信道衰落快时使用最小二乘二次曲线内插的方法。 对于突发模式的通信,同步的时间越短,通信的效率就越高。在大多普勒低信噪比条件下,同步的时间表现为扫频的间隔大小和扩频码的捕获时间,增大扫频的间隔,减小扩频码的捕获时间都可以减小系统总的同步时间。 在低轨卫星星座CDMA移动通信的同步中,载波多普勒效应是主要的影响因素,在载波多普勒频移不超过1/4T时,造成的性能恶化可以忽略,本文提出一