论文部分内容阅读
反应扩散方程(组)的传播动力学是近几十年来非常活跃的研究领域之一.由于传播介质的复杂性,异质环境中传播动力学的研究引起了学者们极大的兴趣.同时,异质媒介中的对流运动,使得研究对象的动力学行为变得更为复杂和多样化.作为典型的异质媒介载体,时间和/或空间周期反应扩散系统常常被用来研究异质媒介中不同描述对象间的相互作用.本文以带对流项的反应扩散系统为对象,研究其在空间或时间周期媒介中的传播动力学,主要包括周期行波解、传播速度和整解.首先,研究了空间周期介质中两种群反应-对流-扩散竞争系统的双稳脉冲波(Pulsating traveling front).通过适当假设,系统在两个周期半平凡平衡态解之间具有双稳结构.利用单调半流抽象理论,建立了具有形式(U(x,x-ct),V(x,x-ct))且连接两个周期半平凡平衡态解脉冲波(空间周期行波解)的存在性,其中(U,V)关于第一个分量周期.然后利用收敛定理,证明了脉冲波关于适当波型初值是全局渐近稳定的.最后利用脉冲波的稳定性质建立了其(平移意义下)唯一性.主要方法包括上下解方法、传播速度理论以及动力系统方法.其次,研究了空间周期介质中两种群反应-对流-扩散竞争系统的波型整解(Front-like entire solution).为构造适当的上下解,首先研究了双稳脉冲波在无穷远处的精确衰减行为,得到适当估计.然后通过考虑左行和右行脉冲波的相互作用,结合比较原理,建立了系统波型整解的存在性及其他定性性质,包括稳定性、唯一性、关于参数的连续依赖性等.其中,部分整解是稳定且(平移意义下)唯一的解的二维流形,其表现为两列波沿实轴两端相向而行并相互交错.其他整解表现为两列波沿实轴一端同向而行,传播较快的脉冲波追赶并最终合并传播较慢的脉冲波.再次,研究了时间周期两种群竞争系统的波型整解.双稳假设下时间周期行波解(X(t,x-ct),Y(t,x-ct))的存在性已有结果,其中(X,Y)关于第一个分量周期.利用双边Laplace变换结合谱分析方法,得到了周期行波解在稳定平衡态解处的指数型或指数倍数型衰减估计,其依赖于两个行波解分量对应方程的相关线性化指数大小.然后利用周期行波解(X(t,x-ct),Y(t,x-ct))及其关于空间变量的镜面反射解(X(t,-x-ct),Y(t,-x-ct))构造上下解,得到波型整解的存在性.特别地,时间周期情形下建立的波型整解关于时间变量具有“周期跳跃”单调性.最后,研究了RN中空间周期反应-对流-扩散合作系统的传播动力学.为研究行波解和传播速度的存在性,首先建立高维周期空间中单调半流的抽象理论.进一步通过适当假设,得到合作系统传播速度以及沿方向e∈SN-1传播的、具有形式W(x,x.e-ct)的脉冲波存在性,同时给出系统具有单一传播速度且线性确定的充分条件.然后研究了非临界和临界波速两种情形下脉冲波在无穷端的衰减行为.根据两列不同脉冲波的传播方向,分别建立了三种情形下整解的存在性等定性性质.最后给出一个具体模型,得到上述传播动力学行为.