论文部分内容阅读
电化学聚合可选择定向沉积,制备的薄膜结构性质可控,但是由于链段的强相互作用和电荷残留引起的猝灭效应,电聚合薄膜一般没有荧光或荧光较弱。在以往的工作中,我们课题组开发出一种电聚合前体分子OCBzC,分子外围含八个咔唑作为交联基团,在电聚合的过程中能形成高交联度的发光薄膜;由其制备的有机电致发光器件(OLEDs)的亮度以及效率能达到旋涂器件的水平,在OLEDs及显示中有潜在的应用。在传统方法制备OLEDs发光薄膜的过程中,一般可以利用共混的方法来改善薄膜的质量制备性能更优异的器件;在电化学方法中,可以利用两种或多种分子的电化学共聚合来调节薄膜的结构与性质,进而优化器件性能。本论文围绕电化学共聚合薄膜在有机电致发光器件中的应用,以调节并优化发光薄膜的质量及电致发光性能为目标,选择了烷基三咔唑分子和发光分子OCBzC进行电化学共聚合,系统分析了电化学动力学、共聚合薄膜的致密度及相关器件性能;并讨论了不同取代基的三咔唑分子的电化学行为、共聚薄膜的性质以及相关器件的性能和显示系统集成,主要有以下内容:(1)烷基三咔唑分子与发光分子OCBzC的电化学共聚合研究及其在OLED中的应用。研究了烷基三咔唑分子(E-3Cz)与发光分子(OCBzC)的动力学和电化学行为,E-3Cz相比OCBzC分子在电聚合的过程中拥有更快的扩散速率以及电子转移速率,其电化学活性更高,起始氧化电位更低。将E-3Cz与OCBzC进行电化学共聚合,E-3Cz分子的引入导致OCBzC的聚合速率以及薄膜厚度显著增加。通过调控不同的共聚合比例,优化了共聚合薄膜的形貌。薄膜的致密度由共聚前的1.742增加到共聚后的1.763。空穴迁移率由共聚前的4.8×10-88 cm2 V-11 S-1提高到共聚后的1.1×10-66 cm2 V-1S-1(提高约23倍)。由共聚薄膜作为发光层制备的器件的开启电压有明显的下降(由共聚前的6.2 V降低到共聚后的4.3 V),共聚薄膜器件达到最大亮度以及最大效率的电压分别为10.8 V、7.2 V,这比OCBzC薄膜的更低(OCBzC薄膜器件达到最大亮度以及效率时的电压分别为14.8 V、10.8 V)。(2)取代基效应对三咔唑分子与发光分子OCBzC电化学共聚合的影响。研究了不同取代基的三咔唑分子的电化学性质和动力学性质,三种分子中,E-3Cz,3Cz,B-3Cz起始氧化电位依次递增,电子转移速率依次递减。在三种三咔唑分子与OCBzC分子电化学共聚合的过程中,OCBzC的聚合速率和薄膜厚度显著增加,E-3Cz分子对OCBzC的促进作用最明显。在三种分子与OCBzC的共聚薄膜中,它们的导电性以及致密度都高于OCBzC的单聚薄膜,且E-3Cz/OCBzC薄膜的空穴迁移率最高(1.1×10-66 cm2 V-11 S-1)。由这三种共聚薄膜制备的OLED器件漏电流相比OCBzC薄膜器件均有所改善,且器件的开启电压由OCBzC薄膜器件的6.2 V分别降低到了E-3Cz/OCBzC薄膜的4.3 V,3Cz/OCBzC薄膜的5.3 V和B-3Cz/OCBzC薄膜的5.7 V。E-3Cz/OCBzC以及3Cz/OCBzC这两种薄膜器件在达到最大亮度的电压均为10.8 V,低于OCBzC薄膜器件的(14.8 V)。达到最大效率时的电压分别为7.2 V、7.6 V,比OCBzC薄膜器件(10.8 V)要低。(3)芯片控制的电化学沉积技术在制备图案化彩色薄膜中的应用。首先是提出了利用芯片来控制电化学信号的通断来对AMOLED基板上的像素进行有选择性的沉积进而制备彩色图案化薄膜的装置以及方法,同时,验证了芯片控制电化学聚合在AMOLED基板上的可行性,探索适用于电聚合的AMOLED基板材料。寻找更为合适的金属电极层材料至关重要。