论文部分内容阅读
四硫富瓦烯及其衍生物因具有良好的供电子性质和氧化还原性质而受到广泛的关注,已经被发现在导体、半导体、超导体材料、超分子化学、大环化学、生物传感器以及化学传感器等方面有着十分重要的应用。近十年来这类化合物的研究热点之一是:设计具有含氮、含氧配位基团的TTF衍生物,从而使TTF类化合物具有氧化还原和金属配位的双功能结构。比如说吡啶环、冠醚以及酰胺功能化的TTF化合物,其中吡啶类TTF衍生物的配位化学以及电荷转移化合物已经得到了较多的研究,而酰胺类TTF衍生物由于可以形成丰富的氢键,使得它们在生物活性以及超分子化学方面具有较好的应用前景,才刚刚引起科学家们的关注。虽然已有一些相关的报道,但是对于分子间作用力的研究还有待于进一步深入,对于这一领域的探索研究仍有较大的发展空间。因此,本论文以酰胺类TTF衍生物作为基础,合成新的衍生物及金属配位化合物,研究它们的晶体化学和溶液化学。论文的工作主要包括以下几个方面:一、以TTF酰胺衍生物DMT-TTF-(CONH2)2 (L1)为前驱体,用简便的液相反应方法得到了它与CuX2(X=Cl, Br)的三个电荷转移配合物以及电荷转移盐[L12Cu2Cl6] (1), L12Cu2Br6 (2), L12Cu2Br4 (3)。在配合物1中,二价铜与酰胺基团的氧原子直接配位,这是在酰胺类TTF衍生物中第一个配体既被氧化又与金属存在配位作用的例子。磁性研究表明TTF游离基之间存在很强的自旋耦合。化合物3是一个自由基盐,包含一个Cu2Br42–配阴离子和一个[DMT-TTF-(CONH2)2]+阳离子。氢键以及短程S···S相互作用在的化合物1和3的分子组装中发挥了十分重要的作用。二、以TTF甲基酰胺衍生物DMT-TTF-(CONHMe)2 (L2)为前驱体分别与CuX2 (X = Cl, Br)以及Cu(ClO4)2作用,得到了四个电荷转移化合物,L22CuBr4 (4),L22CuCl4 (5), L2·ClO4 (6),L2·Br (7)。通过对化合物4、6、7的结构比较,我们得出这样一个结论:当S···S相互作用相近的情况下,C···C相互作用对化合物的性质起到主要决定作用,并且通过理论计算对这一结论进行了论证。以单臂甲基酰胺类TTF衍生物DMT-TTF-CONHMe(L3)为前驱体分别与CuX2 (X=Cl, Br)作用,得到了三个电荷转移化合物L32CuBr3·2THF (8), L32CuCl3 (9), L3·Br (10)。同时研究了L2对H2PO4–等离子的氧化还原响应。结果表明:化合物L2对不同阴离子显示不同的响应,与H2PO4–之间存在较强的作用力。三、把吡啶基团引入到酰胺–TTF体系中,合成了TTF衍生物DMT-TTF-(CONHCH2Py)2 (L4)。以此为前驱体,分别与化合物CuI,AgClO4,MnCl2和Ni(acac)2反应得到了四个配位化合物[Cu2I2L42]·THF·CH3CN (11),[AgL42]·ClO4·H2O (12), [MnCl2L42]·CH3CH2OH (13),[Ni(acac)2L4]·2CH3OH (14)。结构测定表明:配合物11是通过碘架桥形成的双核铜的一维化合物,配合物12的中心金属银采用了直线型配位的几何构型,并且通过Ag···Ag的无序振动形成准金属线。配合物13是吡啶类TTF衍生物中第一个二维的聚合物。配合物14是一个简单的单核配合物。研究了它们的紫外光谱和电化学性质。四、把乙二胺引入到酰胺–TTF体系中,合成了一个新的TTF衍生物DMT-TTF-(CONHCH2CH2NH2)2 (L5),用化合物Cu(ClO4)2,Ni(OAC)2,HClO4分别与L5反应得到了两个配合物[NiL5]·1.5CH3OH (15)和[CuL5(CH3OH)]·H2O (16)以及质子化化合物[L5H2]·2ClO4 (17)。配合物15和16的结构类似,金属离子均分别与配体两个臂上的自由胺基配位,与两个酰胺基团上的氮原子脱质子后形成共价键;而17则是配体中自由NH2上加质子得到的质子化化合物。研究了它们的紫外光谱和电化学性质。我们以酰胺类TTF衍生物为研究对象,讨论了酰胺类TTF衍生物与金属离子的相互作用,探索了其氧化还原性、磁性等。从理论上和结构上揭示了这类酰胺衍生物的基本性质,并探讨了这类化合物的超分子结构和配位组装。本论文的研究对于分子材料的探索有着重要的意义。