【摘 要】
:
随着消费者对消费电子行业的需求不断扩大,市场前景越来越广阔,消费电子行业内的企业也纷纷寻求自己的发展机会。高额的溢价产生了大量的商誉,高额商誉在给企业带来利益的同时,可能也给企业未来的发展带来了一定的风险。近些年来,资本市场并购案中由于未能达成业绩承诺,并购方大量计提商誉减值损失的案件层出不穷,大量计提商誉减值损失往往会产生不良经济后果,影响企业未来发展。因此,并购活动最重要的是研究如何做好高商誉
其他文献
<正>数学是思维的科学,以其思维的合理性、逻辑的严谨性等特点使数学教学具有独特的育人价值.《普通高中数学课程标准(2017年版)》指出,“数学在形成人的理性思维、科学精神和促进个人智力发展的过程中发挥着不可替代的作用”[1].课堂教学中理性思维的充分展现需要教师对所教授的知识、方法有深刻的认识,才能从本质上予以呈现,从而使学生体会并理解他所学习的数学,真正实现数学的育人价值.
<正>勾股定理是初中“图形与几何”版块中的一个重要定理,很多教师对其做过深入的思考和研究。下面笔者就本课例的突出优势和完善建议做出分析。1突出优势1.1探究学习融入定理教学数学定理是中学数学教学的重要知识载体,它承载着思维培育的重要使命。在定理教学中,教师应当创造定理发现的课堂氛围,让学生积极参与联想推理、直觉判断、归纳概括等思维活动。本课例中,执教者设计的学生活动是有序连贯的。
概述自组织理论的思想渊源与自组织理论在教学领域的基本观点,以“二项式定理”教学为例,提出了自组织理论视域下的高中数学教学路径,以使学生在自我经历中实现自我适应、自我改造和自我完善,真正实现学生的可持续发展.
勾股定理被视为几何学的宝藏,是数学中联系数与形的第一定理,在实际生活中应用广泛.为落实数学核心素养的发展,研究者结合核心素养的相关内涵,对勾股定理这一经典内容进行了教学设计重构,以期通过该定理的教学落实发展数学核心素养.
<正>知识的认知往往是通过学习活动进行建构的,并且学习活动的开展需要遵循螺旋上升的原则,即从具体到抽象、再到具体的顺序开展,而高中数学关键性定理不仅涉及内容较为抽象,而且还对其他知识的学习起着关键性的作用.因此,在高中数学关键性定理教学中实施递进性学习活动,则不仅能够激发学生的主体意识,尽可能地调动学生的探究精神,
<正>立德树人是当今教育的根本任务,如何在教学过程中落实立德树人,是数学教育研究的重要课题[1].本文以\"二项式定理\"教学为例,探讨HPM视角下数学学科德育的教学实践,供参考.一、历史概述与德育价值分析1.萌芽阶段公元前3世纪,欧几里得《几何原本》卷2记载了命题:\"任意分一线段成两段,则整段上的正方形等于两分段上的正方形与两分段所构成矩形的二倍之和.\"
从一次送培送教活动中的研讨环节出发,提出了“韦达定理”教学“三面派”,详细分析了形成“三面派”的根源,并提出了在实际教学中对“韦达定理”的教学建议.
《义务教育数学课程标准》(2011年版)强调要注重数学思维的培养,使学生养成良好的思考习惯,从而培养适应时代发展的人才.高阶思维能力是多种高水平认知能力的综合体现,课堂是高阶思维培养的主场所,教师在课堂中通过教学环节的设计探索高阶思维的培养、促进学生思维能力的全面发展具有重要意义.
除数学概念理解评价外,数学定理学业成就的评价也值得教育研究者的关注.相似三角形判定与性质定理不仅是初中阶段三角形相关定理学习的重点与难点,而且频繁出现在中考试题中.因此,评价学生学习相似三角形判定与性质定理的学业成就具有一定的价值.在数学定理、数学联结和PISA和TIMSS测评研究的基础上,结合数学定理的学习特点,将定理评价框架的一级维度设置为理解、联结和应用并细分二级维度.本研究根据数学定理学习