海测船上测线导航路径规划

来源 :天津大学 | 被引量 : 0次 | 上传用户:fyishen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
一切的海洋活动都离不开海洋测绘保证,为了提高海洋测量的精度,减少人工站点的投资,近年来国内外学者一直致力于船载走航测量模式的研究,而海洋测量船驶向测量线的航线规划正是船载走航测量的重要内容。运用现代计算机信息、网络技术综合处理海洋地理环境信息实现高可靠性、高精度的路径规划对于海洋测绘工作的顺利展开具有重要意义。
  国内外海洋航行正逐步进入智能化、自动化导航的阶段,但国内针对海洋测量船驶向为实现海洋测绘所布设测量线的路径规划一直尚不完善,本文以测量船的实际航行为背景,对海洋测量船驶向测量线的路径设计进行详细的研究,主要完成工作如下:
  (1)归纳了常见的用于路径规划的算法。总结概述了常用的路径规划算法,为实现更加贴合海洋环境以及测量船驶向测线的算法设计提供了可靠参考。
  (2)分析影响海洋测量船上测量线的因素。从测量船行驶特点、偏航现象以及海洋测绘测量线布设特点等方面详细分析了测量船驶向测线的主要影响因素,对规划测量船上测线路径提供了前提条件,以便高效的进行数学建模并得出分阶段分析测量船行驶上测线的初步规划。
  (3)探讨了用于路径规划中的常见智能算法并进行对比总结。详细分析了遗传算法和蚁群算法这两种智能算法的原理并以旅行商问题建立基本数学模型,同时进行仿真实验对比算法对常见路径寻优问题的解决能力,确定了蚁群算法对处理航线设计设计问题具有一定的优越性,并对于利用遗传算法改进蚁群算法提供了理论参考。
  (4)研究改进蚁群算法提高算法性能。首先仿真讨论了基本蚁群算法的参数,得出适合实验环境的最佳组合,然后针对利用传统的蚁群算法的众多缺点做出修改启发函数,增加初始信息素,更新信息素策略的改进,并对真实海图环境建模,进行仿真分析改进后的蚁群算法的路径搜索能力,得出测量船驶向测量线第一阶段的路径规划算法。
  (5)研究了测量船在测量区域驶进测线的路径规划算法。以测量线所在位置为参考重新建立坐标系,并根据测量船在新坐标系下的位置和航向角设计出不同的航线,得出测量船驶向测量线第二阶段的路径规划算法,最后对处于不同位置和不同航向角的测量船进行仿真,验证了算法的可行性。
其他文献
现如今,卷积神经网络作为实现计算机视觉的重要方法之一,得到蓬勃并且急速的发展。基于卷积神经网络的目标检测技术在精度和速度方面远远超过传统算法,可以达到甚至超过人眼的水平。人脸检测技术作为目标检测领域的一个核心技术,是计算机视觉的重要组成部分,可以应用于考勤系统、智能监控、车站安检等众多场景之中。  作为基于卷积神经网络的目标检测算法的经典代表,Faster-R-CNN算法在目标检测任务中达到了很高
学位
时间触发以太网(Time-triggered Ethernet, TTE)是一种时间业务与事件业务混合的以太网网络通信新技术,相较于传统以太网,时间触发以太网提高了网络资源利用效率。  本文首先基于现有的混合流量分区调度策略,引入TT响应约束,设计适用于存在响应约束的TTE网络离线调度表生成方法。同时采用对网络流量信息先综合复合,再细化不同终端节点调度表的策略,简化调度表生成方法。并设计离线调度表
深度学习极大促进了计算机视觉领域的发展,如图像检索、目标检测等。但这些任务依赖于大量的标注数据进行训练。然而,现实世界中的某些类别只有少量的标注样本,甚至没有标注样本,这为传统分类算法带来了新的挑战。为了解决该问题,零样本图像分类技术得到关注,即:对训练阶段未出现的类别进行分类。本文针对零样本图像分类技术分别提出基于特定类别的合成字典模型(Class-Specific Synthesized Di
最近几年来,由于互联网技术的快速发展,伴随着信息传播速度的提升,大量三维模型数据开始呈现井喷式增长,三维模型的数据也成为一种新型的数据类型。随着深度学习的出现,国内外研究学者对三维模型的研究成了现阶段一个热点,在各行各业的应用也十分广泛,诸如:医学3D打印技术、计算机辅助设计(CAD)、3D动画设计、工业产品设计、机械零件制造等。鉴于三维模型的应用前景广泛,如何在有效管理大量的三维模型数据同时,并
随着移动互联网技术和相机设备的快速发展,多媒体数据呈现爆发式增长,人们通过图片来直接表达意见、传递信息的方式也越来越常见。一方面,尽管高动态范围图像可以细致反映真实场景,为了方便输出,其通常会被图像处理算法将其动态范围压缩至输出显示设备的动态范围以下。这是高动态范围图像研究的热点和重点之一。另一方面,图像质量的主观评价在过去几年引起了很多的关注。传统的图像主观质量评价主要侧重于预测图像的平均意见得
入侵检测系统是信息与网络安全保障的重要环节,随着网络环境的日益复杂以及黑客技术的不断提升,传统的入侵检测技术已经无法满足安全系统的需求。近年来,越来越多的相关研究都将机器学习与入侵检测技术相结合,以提升检测器对入侵的检测率,并且减少系统的误报率与预测时间。  本文提出了两种基于机器学习的入侵检测模型。(1)针对网络数据的特征维数高、非线性可分等问题,提出了一种基于独立成分分析ICA(Indepen
学位
听力损失是导致儿童聋哑的首要原因,也是困扰老年人正常生活的重要问题之一,因此听力损失的早期诊断具有重要的研究和现实意义。听觉脑干诱发电位(Auditory brainstem response,ABR)检测作为一种客观、无创的听力损失诊断技术,其波形的准确提取对临床诊断结果具有重要影响。  现有ABR检测方法主要基于叠加平均技术,存在信号失真严重、检测时间过长、对患者和测试环境要求过高等问题。卡尔
第五代移动通信对无线通信系统提出了更高的挑战,如提供更高的传输速率、实现更低的时延和提供灵活的波形选择等。时下流行的正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)波形已经不能满足这些需求。因此,需要为其寻找合适的替代方案。广义频分复用(generalized frequency division multiplexing, GFDM
学位
低频振动检测在工业测量领域的应用越来越广泛,而三维地貌信息的恢复是对振动物体进行测量的先决条件。考虑到被测物体与测量者相隔距离远,或者物体质软,易于形变等不易测量的情况,传统的接触式测量方法只能对静态物体进行测量。为了能进行快速的全场式测量,需要使用非接触的光学测量方法。条纹投影技术是非接触测量中的重要组成部分,该方法通过对比物体放置前后由相机拍摄的两张条纹图像的相位差,从而获取物体的三维深度信息
学位
多旋翼微型无人机因其灵活、便携、可垂直起降和高速巡航等特点,被广泛应用在航拍测绘、农业植保等多个领域。随着行业无人机技术的发展,无人机应用领域不断扩大,许多新兴的应用,如智慧物流、搜索救援、电力巡检等,对无人机的自主性提出了更高的要求,需要无人机在执行任务的过程中能够自主地处理各种复杂情况,例如无人机在GPS失效的情况下仍能精确定位、在飞行过程中自主躲避障碍物、动态规划航线、自主探测到合适的位置降
学位