【摘 要】
:
激发电子具有高主量子数n的里德堡原子,有许多奇异的特性,例如尺寸大(∝n2),激发能高(Ebind∝-1/n2),碰撞截面大(∝n4),能级密集(∝1/n3),等等。因此里德堡原子是研究多体效
【出 处】
:
中国科学院研究生院 中国科学院大学
论文部分内容阅读
激发电子具有高主量子数n的里德堡原子,有许多奇异的特性,例如尺寸大(∝n2),激发能高(Ebind∝-1/n2),碰撞截面大(∝n4),能级密集(∝1/n3),等等。因此里德堡原子是研究多体效应和碰撞动力学的较为理想的量子体系。本论文计划从理论和实验两个方面对里德堡原子进行研究。理论上计算了具有三个价电子的钪原子的高激发态能级结构,研究其中的电子-电子关联作用。实验上搭建一套制备铷冷里德堡原子的实验平台。具体工作包括:
1.在多通道量子数亏损理论(MQDT)框架下,利用相对论多通道量子数亏损理论(RMCT),在四个层次的近似下计算自电离里德堡系列3d4s(1D2)np2Po1/2,即单通道计算(冻结实近似)、考虑偶极极化效应的计算、考虑四极极化效应的计算、同时考虑偶极极化效应和四极极化效应的计算。我们的计算表明同时考虑偶极极化效应和四极极化效应的计算能较好地说明该系列的电子-电子关联效应;
2.解决铷冷原子实现过程中常出现的三个问题,即真空故障,冷原子形状畸变及玻璃阱里铷是否存在;
3.完成用于将冷原子激发到里德堡态或将冷原子直接电离的激光系统的搭建;
4.完成激发光路的搭建,使激发光通过三束冷却光交汇的中心,即激发光通过冷原子云;
5.初步搭建了冷里德堡原子和超冷等离子体的探测体系。
其他文献
在本篇论文中,我们研究了87Rb D1线双-lambda能级结构与两束线偏振光场耦合的系统,其中一束是强的控制光,另一束是与强光偏振方向正交的弱的探测光。我们发现,通过添加直流磁场,可
传统的激光泵浦-探测手段在分析原子(或分子)内部结构时,通常采用一束高频的激光脉冲驱动原子(或分子)电离,然后通过一束探测激光研究光电子的能量分布来研究原子(或分子)的内
作为地球上生物体的化学基础元素,碳元素是如此重要,以至于在1964年诞生了以它命名的著名学术期刊《Carbon》,至今还没有哪一种化学元素能够像碳元素一样受到如此广泛和深入的研究。在众多为人熟知的碳材料中(石墨,金刚石,富勒烯,碳纳米管以及石墨烯等),石墨烯的研究热潮在时间上离我们最近。提及石墨烯的文献能够追溯到上个世纪五十年代,这种二维的碳原子层作为一个物理模型,用来研究石墨的物理特性,其中之一
电容器作为集成电路上的重要元件,其尺寸的减小对于提高集成电路的集成度起着非常重要的作用。高介电常数材料可以使得电容器在减少尺度的同时仍然保持高的电容量,因此寻找新
根据雷达的工作原理及成像方式的不同,成像雷达可以分为合成孔径雷达(SAR)和逆合成孔径雷达(ISAR)。雷达平台相对于固定地面运动形成合成孔径,实现SAR成像。反过来,若雷达平
对于夸克物质的研究是非常有意义的,它往往涉及到一些诸如极高温极高重子数密度的极端条件下的物质行为,这有利于我们在理论上理解并描述一些奇特的相关现象。其中在中子星的内
随着激光二极管LD的发展,探索适合LD泵浦的激光晶体成为热点。钨酸盐晶体在近些年来得到了广泛深入的研究。但是,三元系钨酸盐却少有报道。本论文研究了适合LD泵浦的掺稀土离子
如何获得高质量的蛋白质晶体一直是限制利用X射线衍射法解析蛋白质三维结构的瓶颈之一,多年来如何改善蛋白质晶体生长过程、提高晶体生长的效率一直是研究热点。长期以来,这
悬臂梁是一种常见的工程力学构件,在传感器领域得到很广泛的应用,对悬臂梁的研究也受到学者们的广泛关注,随着光纤光栅技术的发展和成熟,光纤光栅传感技术也逐渐被用于该领域的研
1877年,John Kerr研究放置在磁场中的物质与线偏振光相互作用时,观察到反射光偏振态变化,这个现象被称为磁光克尔效应(MOKE)。基于量子力学,人们发现磁性材料的磁光克尔效应来源