【摘 要】
:
切换系统是一类动态混杂系统,由若干个子系统和一个协调子系统运行的切换规则构成,其在理论研究和实际应用中有着重要作用。在现代科技社会中,切换系统有着广泛的应用,如机械自动化、电力电子、交通网络等,并且关于切换系统的研究也日益受到关注。为了减少切换系统稳定性条件的保守性,本文引入矩阵多项式用于构造李亚普诺夫函数。矩阵多项式可以引入更多自由变量,从而降低线性矩阵不等式条件的保守性。根据这一特性,本文将矩
论文部分内容阅读
切换系统是一类动态混杂系统,由若干个子系统和一个协调子系统运行的切换规则构成,其在理论研究和实际应用中有着重要作用。在现代科技社会中,切换系统有着广泛的应用,如机械自动化、电力电子、交通网络等,并且关于切换系统的研究也日益受到关注。为了减少切换系统稳定性条件的保守性,本文引入矩阵多项式用于构造李亚普诺夫函数。矩阵多项式可以引入更多自由变量,从而降低线性矩阵不等式条件的保守性。根据这一特性,本文将矩阵多项式方法应用于切换系统稳定性分析与控制器研究中。围绕切换系统与矩阵多项式展开研究分析,文章主要内容可以分为如下部分:首先是所有子系统均不稳定的切换系统的分析研究。本文利用线性内插法构造了离散李亚普诺夫函数,并分别推导系统在驻留时间、平均驻留时间切换下的全局一致指数稳定的充分条件。随后,比较驻留时间与平均驻留时间切换的区别,通过仿真分析两者的优劣,研究线性内插法中参数变化对驻留时间、平均驻留时间取值的影响。其次,借助矩阵多项式可以引入多自由变量的优势将其应用于所有子系统均不稳定的切换系统。利用矩阵多项式构造离散李亚普诺夫函数,获得切换系统在平均驻留时间下是全局一致指数稳定的充分条件,并将其与线性内插法进行对比分析。为进一步减少切换系统稳定条件的保守性,本文创新地将线性内插法与矩阵多项式结合构造李亚普诺夫函数,然后对切换系统做稳定性分析,通过仿真实例验证新方法的先进性、实用性与有效性。最后,将矩阵多项式方法做进一步扩展,延伸到切换系统控制器设计领域。控制器设计是切换系统的研究重点之一,本文利用矩阵多项式重构李亚普诺夫函数,推导出切换系统稳定的充分条件。更为关键的是,借助矩阵多项式设计了在平均驻留时间切换下的时变增益控制器使切换系统是全局一致指数稳定的,拓展了矩阵多项式的应用范围。通过仿真实例表明,时变增益控制器比常数增益控制器有着更好的系统性能,这验证了矩阵多项式方法在切换系统控制研究中的正确性与可行性。本文将矩阵多项式方法应用在了对切换系统的分析研究中,借助矩阵多项式方法推导出了切换系统在平均驻留时间下的全局一致指数稳定的充分条件,并进一步构造了时变增益控制器,这对切换系统的研究是一个重要突破。最后也通过仿真实例,证明了矩阵多项式用于切换系统稳定性分析及控制器设计是可行的。
其他文献
合成孔径雷达(Synthetic Aperture Radar,SAR)具有全天时、全天候的特点,在军用和民用领域有巨大的应用价值和研究意义。但是,SAR成像过程中,回波相干叠加、成像资源不足、雷达系统误差以及平台相对运动等不利因素会导致SAR图像出现质量退化效应,主要表现为斑点状噪声和分辨率下降,严重影响了SAR图像的信息提取与解释。近年来,深度学习飞速发展,在图像处理领域取得了突破性进展,对于
车位监测系统成本过高是制约传统停车场智能化改造的最大因素。本文通过分析市面上现有车位监测系统,研究出基于无线通信链路的车位监测系统,相比有线通信链路的车位监测系统具有更低的成本。为了提高车位监测系统的整体性价比,本文通过相关技术对比,最终确定以微波雷达传感器作为本系统的车位监测传感器,以ZigBee协议为本系统的网络通信协议,并根据停车场应用场景完成了车位监测传感器和ZigBee网络的系统参数设计
在计算机视觉研究领域,人体姿态估计技术是动作分析、人机交互、智能监控、医疗辅助分析、工业测量和电影特效制作等诸多应用的关键技术。随着深度学习以及卷积神经网络被应用于各种领域,该技术得到长足的发展,使用卷积神经网络模型来进行人体姿态估计的研究越发流行。本文基于人体姿态估计最新的网络模型,改进关键点定位算法,从两个方向出发研究人体姿态估计的问题。第一个方向针对于现在卷积神经网络越发复杂,为了能够获取更
目标跟踪问题一直是军事、导航等领域的重要研究内容。随着无线传感器网络(Wireless Sensor Networks,WSNs)的快速发展,点目标的分布式跟踪技术得到了广泛关注。由于非线性系统比线性系统在实际工程中的应用更广泛,非线性系统中点目标的分布式跟踪方法逐渐成为研究焦点。随着传感器技术的发展,扩展目标的分布式跟踪技术也在海上监管、无人驾驶等新兴领域具有巨大的潜在价值。本文主要研究WSNs
无线传感器网络是一个低成本、灵活性强、易于部署的自组织网络,在目标探测、事件监测等军民领域具有广泛的应用前景。通常,无线传感器网络节点面临着计算能力、能量资源的限制。因此,如何减少传输数据冗余,降低节点能耗,保护数据安全成为无线传感器网络研究的热点问题。数据聚合是由网络中的传感器节点收集数据,通过上层聚合节点对收集的数据进行处理,是传感器网络数据处理的重要手段。目前,基于数据平均等简单的数据聚合算
随着信息技术及电子战的迅猛发展,雷达信号自动调制识别作为电子对抗侦察中重要一环,成为了目前信息化电子战的研究热点。传统的雷达信号自动调制识别方法主要采用脉冲描述字浅层特征和模板匹配过程。当面对日益复杂的战场电磁环境,传统方法往往计算量较大且依赖于专家知识,识别性能难以满足要求。近年来,伴随深度学习的兴起和广泛应用,深度学习神经网络被引入雷达信号识别方法中,尽管基于深度学习的识别方法取得了不错的识别
多输入多输出(Multiple input multiple output,MIMO)雷达是一种新型雷达,用来应对日益复杂的战场环境。MIMO雷达相较于传统的雷达具有更好的波形分集能力,并且可以改善目标识别和参数估计等各方面的性能表现。MIMO雷达根据天线阵列的放置情况来分为集中式和分布式。两者均可通过发射正交波形来提高性能,其中发射正交波形可以让集中式MIMO雷达在接收端形成虚拟孔径来提高参数估
环境声音识别(Environment sound recognition)是指让计算机设备以一定的算法方式对采集到的环境声音进行分类与处理的过程,其在智能机器人、移动设备监测、自动驾驶、环境安全监控、智能家居、智慧城市等领域都有广泛的应用前景,是计算机听觉(Computer Audition)领域重要的研究方向之一。环境声音分类和增强是声音识别领域重要的研究内容。随着人工智能技术的不断发展,神经网
随着社会经济的不断发展,人民群众对于生活品质和人居环境的要求不断提高,噪声污染问题也日益凸显。由于噪声的产生与人们的生活状态、主观意愿高度关联,先进的技术手段对于噪声监测和防治必不可少。定向声波发射技术可以用于具有高指向性的声源装置,由于避免了声波的扩散,从根本上减少了噪声的产生。参量阵是定向声波发射的代表性技术之一,可以在较小尺寸上实现定向声波发射。虽然许多的研究工作都致力于降低参量阵的失真水平
无线传感器网络具有无线感知以及无线通信的作用,是重要的三维网络研究技术之一。传感器网络由多个具有自组织能力的节点组成,是当前网络研究中的一个热门领域,应用于多个领域方面,例如军事预防,地震监测,环境监测以及海底勘探等。目标跟踪技术是研究三维空间发展的重要部分,利用多个传感器节点的数据信息估计出目标当前时刻的状态。在目标跟踪系统中,利用滤波技术估计目标运动状态,根据滤波算法来消除相关的不确定性,实现