论文部分内容阅读
空间目标泛指人造卫星、空间碎片、行星、恒星、彗星、空间站等,而快速空间目标主要指中低轨道的人造卫星和空间碎片。目前在轨的人造卫星约有3700多颗,空间碎片的数量在11000以上,因此有必要提高空间目标的跟踪测量技术,增强空间环境的分析预警能力。相比于雷达探测,光电探测具有角分辨率高、抗电磁干扰能力强、造价低廉、体积小、重量轻等优点。 本研究新建一台53cm双筒光电望远镜,主要建立一套收发分光路的卫星激光测距系统,并配合已有的1.2m激光测距望远镜进行联合观测。由中国科学院南京天文仪器厂制造望远镜的光机部分,而中国科学院云南天文台负责设计并研制望远镜的伺服控制系统和光学引导系统,最终确保该望远镜能高精度地跟踪400km以上的空间目标,尤其是低轨道的快速空间目标,跟踪精度需优于10"。伺服控制系统负责控制望远镜机架主要按照空间目标的预报轨道来运动,光学引导系统(大多为成像系统)负责检测与跟踪空间目标并实时提取脱靶量,传送给伺服控制系统作指向的修正。本文的研究内容是围绕53cm双筒光电望远镜以上两大系统而展开,主要的工作包括空间目标的特性分析、望远镜伺服控制系统的方案设计、望远镜伺服控制系统的部分软硬件开发、望远镜伺服控制系统的安装调试与跟踪测试、空间目标检测与跟踪算法的研究、空间目标光学引导系统初期的工程实现与现场测试等。在望远镜伺服控制方面,根据空间目标的运动特性,确定了伺服控制系统的指标和方案,进而分析了各设备器件的选型。作为主要完成人,作者实现了硬件的集成及控制器的嵌入式开发,由控制器执行实时控制的任务,而由工控机实现引导数据传送、任务管理和人机界面等任务。作者还设计了工控机与控制器之间的通信协议,采用预报数据超前载入和硬件自定时执行的方案,克服了通信延时和VC++定时精度不高的问题,以实现精确控制;并优化了控制算法,采用位置二次闭环与混合PID的控制策略,大大提高了伺服控制系统的跟踪精度与抗干扰能力。作者全程参与该伺服控制系统的两次安装调试工作,不仅完成各项功能的测试,还超额完成了设计指标。并且在有限的实验条件下,该望远镜对某些空间目标进行了跟踪测试与图像采集,成像结果表明可实现目标的稳定跟踪。 本文在空间目标检测与跟踪方面,根据空间目标的成像特性,依次提出了三种空间目标检测与跟踪的算法,以适应不同的空间环境。针对较复杂的空间环境,提出了基于联合决策与朴素贝叶斯学习的空间目标检测算法,还提出了占空比特征,采用两步检测的框架,可很好的解决CCD拖尾和强噪声的干扰问题,并对弱小目标具有一定的检测能力。针对较单一的空间环境,提出了基于二次方差的空间目标检测与跟踪算法,从二次方差特征分析,到二次方差检测,最后到基于二次方差检测的跟踪,采用双窗口的跟踪模式,设计了一套完整的解决方案,可较为快速的检测与跟踪目标。在多示例学习的基础上,并结合前两种算法各自的优点,提出了基于多示例学习和在线朴素贝叶斯的空间目标跟踪算法,可较快的鲁棒的检测并跟踪快速运动的空间目标,能通过不断的在线学习而自适应变化的目标和空间环境,并可抑制CCD强拖尾的干扰。最后设计并开发了空间目标光学引导系统的跟踪软件,由于光路尚未完全安装等因素,该跟踪软件只进行了目标跟踪与脱靶量修正的初期现场测试,同时对脱靶量的预测补偿也进行了模拟实验。基本完成了53cm双筒光电望远镜伺服控制系统的设计与研发工作,满足跟踪400km以上空间目标10"的精度要求,并重点研究了空间目标的检测与跟踪算法,为脱靶量的准确提取提供了技术保证,同时还完成了空间目标光学引导系统初期的设计、开发与测试,为53cm双筒光电望远镜进一步的研制和研究工作打下了良好的基础。