论文部分内容阅读
近些年来,由于城市化、工业化和农业活动的迅速发展,微量元素作为工业和人类文明的副产品,越来越多的进入环境中,对生态环境造成了严重威胁。环境样品中元素及其形态的时空分布信息对了解微量元素在环境中的迁移、转化及环境污染物去除具有十分重要的意义。目前,微量元素的主要分析方法为原子吸收光谱、原子荧光光谱、电感耦合等离子体发射光谱及电感耦合等离子体质谱等。这些方法具有较高的灵敏度,但仪器结构较为复杂,分析成本高、对实验条件要求较高,难以应用于突发性环境污染事件的现场快速分析。因此,发展操作简单、灵敏的可应用于现场元素含量及其形态分析方法对应对突发性环境事件具有重要的意义。近十年来,纳米金作为比色传感探针广泛应用于有机化合物以及无机离子的检测。基于纳米金的比色测定不需使用有机共溶剂、酶联反应、光敏染料分子、及复杂的仪器设备,从而克服了传统实验室分析限制。然而,纳米金易受样品基质的高盐分和强酸/碱的影响,这无疑降低分析方法的选择性,影响分析的准确性。紫外光化学蒸气发生技术是指在低分子量有机化合物存在下,样品溶液经紫外光照射,元素可转化为挥发性形态。该方法具有绿色、抗干扰能力强等优点,作为新型、高效的原子光谱样品引入技术被广泛用于元素及其形态分析中。基于此,我们建立了基于光诱导化学蒸气发生-纳米金可视化分析的元素及其形态分析新体系。具体的工作包括以下两方面内容:硒是人体中不可缺少的一种重要的营养元素。然而,人体中硒过量会导致中毒,不足则会降低机体功能或者导致畸形。一般来说,无机硒的毒性大于有机硒的毒性,其中四价无机硒的毒性又比六价无机硒的毒性大。因此,准确地测定环境样品中不同形态的无机硒有助于提高环境影响和健康风险评估的准确性。本研究通过硒的选择性光化学还原,将硒转化为挥发性的氢化硒,并通入纳米金溶液,导致纳米金团聚,使其溶液颜色由红色转变为蓝色,实现可视化分析。在没有光催化剂的作用下四价硒被选择性测定;在加入光催化剂后四价硒和六价硒的总量可被检测,六价硒的浓度可由总硒浓度减去四价硒的浓度计算而得。方法的检出限可达6.0μg/L,可满足生活饮用水、农田灌溉水等水样中硒测定要求(10μg/L)。该方法无需使用昂贵的大型仪器设备,具有方法简单、绿色和灵敏度高的特点、且无需复杂的样品预还原过程,克服了传统硒形态分析中需要使用浓盐酸预还原及其过程可能产生的元素形态转化及损失对分析准确性的影响。方法的灵敏度可与原子吸收光谱及电感耦合等离子体发射光谱等方法相媲美,该方法可用于环境水体中硒的现场、快速形态分析。碲会造成人体内不同器官衰竭,是一种对人体有害的微量元素。近年来,随着其在橡胶、石油、玻璃、医药和太阳能电池等等方面的广泛应用,随之而来的潜在的环境危害也引起人们的关注。本文中,我们利用纳米二氧化钛与铁离子协同作用的碲光化学蒸气发生新体系,将碲高效转化为挥发性形态,通入纳米溶液中。碲与纳米金的相互作用使纳米金团聚,发生颜色改变,基于此我们建立了环境样品中痕量碲的可视化分析新方法。利用紫外-可见分光光度法,方法的检出限可达0.027μM,裸眼的检出限可达0.1μM。该方法具有灵敏度高,操作简单的优点。此外,由于纳米二氧化钛和铁离子的共同催化作用下,四价碲和六价碲具有相似的灵敏度。因此,该方法可有效避免了传统氢化物发生需碲预还原对分析准确性的影响,用于环境水样中碲的直接、现场分析。