基于图像分割和区域语义相关性的图像标注算法研究

来源 :华中师范大学 | 被引量 : 0次 | 上传用户:cuisong521
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着计算机技术、网络技术和智能通讯技术的飞速发展,大量的图像数据在网络上广泛传播,并且呈现爆炸式增长,如何有效地管理和利用这些图像资源已经成为当前面临的一项难题。虽然人们在图像检索领域已经取得了不少成果,但是仍然存在很多问题。基于文本的图像检索由于效率低和人为主观性早已无法满足当前大数据时代的需求;基于内容的图像检索由于无法解决“语义鸿沟”问题而阻碍了其发展;基于语义的自动图像标注是当前图像检索领域的主要发展方向,研究者在该领域做了很多研究和探索,但是仍然面临着很多技术难题。针对图像检索领域的研究现状和发展趋势以及当前所面临的诸多难题,本文提出了一系列有效的改进方法,主要有以下几点:(1)基于语义的自动图像标注需要利用图像分割算法对图像进行预处理,并且准确而有效的进行图像分割,对后面图像特征提取以及标注模型的构建非常重要。本文提出了一种改进的图像分割算法,该算法的基本思想是:首先使用Mean Shift算法对图像进行预分割,由于Mean Shift算法对图像边缘比较敏感,因而可以很好的提取出图像的边缘信息,但是该算法也很容易产生很多小的区域,针对这一缺点,本文利用Ncut算法对上一步得到的图像区域进行进一步处理,由于Ncut算法总是倾向于得到较大的图像区域,因而可以解决Mean Shift的过分割问题,并且由于Ncut处理的是已经分割好的图像区域,而不是像素点,所以大大减少了计算量,提高了算法性能,然而Ncut算法也存在一定的不足,该算法是一个NP难题,进行分割之前需要首先指定分割区域个数,如果该参数设置不当,也很容易产生过分割和欠分割现象,因而本文利用区域合并与分裂算法对Ncut处理后得到的分割结果进行进一步校正,对过分割区域进行合并,对欠分割区域进行分裂,尽可能提高图像分割结果的准确度。(2)本文提出了一种结合区域语义相关性和高斯混合模型的改进图像语义标注方法。传统的高斯混合模型都是直接根据语义后验概率的大小来得到图像标注结果:一种是直接选择语义后验概率较大的N个语义词作为图像的标注结果,另一种是直接选择语义后验概率大于某个阈值的语义词作为图像标注结果。而这种方法得到的标注结果并不准确,很容易产生一些多余的或者错误的标注词,影响标注结果的准确度。而且考虑到模型中的“语义鸿沟”问题,后验概率的大小并不能完全决定其权重,仅依据后验概率进行分类决策可能存在较大误差。针对以上问题,本文提出了一种基于区域语义相关性的GMM图像标注方法,将各区域之间的语义相关性融合到GMM模型中进行综合决策,对该模型的标注结果进行有效的校准和优化,从而提高标注结果的准确度。
其他文献
图像融合是由信息融合发展而来的,通过对源图像间冗余信息和互补信息进行处理,使得到的融合图像可靠性增强,能更客观地、更精确地和更全面地对某一场景进行图像描述。近年来,
图像去噪一直以来都是计算机图像处理和计算机视觉中的一个研究热点,并且随着成像分析和对图像的后续应用方面的发展,人们对图像质量的要求越来越高,因此自从图像去噪出现的
由于突发公共事件具有突发性、复杂性等特点,要求应急决策人员必须在短时间内做出合理对策。单一依靠决策者的决定并不能保证决策的时效性和有效性。应急决策支持系统可以帮助
随机森林是一种组合分类器,它的主要思想是基于两个随机过程(训练样本随机抽取、特征集随机抽取)来构建多棵相对独立的决策树分类器,然后通过所有决策树参与投票的方式获得最
新技术的革命,特别是信息技术的蓬勃发展,给社会的繁荣进步创造了前所未有的机遇。信息时代也是数据时代,数据已经成为各个领域的宝贵财富和资源。各行各业每天都产生海量数
天体光谱中蕴含着丰富的天体物理信息。通过对天体光谱的分析,可以定性或定量地确定天体的物理、化学成分,直接或间接地测定天体的参数。数据挖掘技术就是从大量的、不完全的
图像是信息传递的主要载体,图像视觉特征的提取、编码及应用是计算机视觉领域的重要研究课题。本文在视觉特征提取的基础上,基于稀疏表达理论对视觉特征进行编码,并将其应用
随着网络技术的发展,各种服务产生的信息量越来越庞大,数据仓库应用及数据分析需求也日益增长,这对数据库性能提出了更高的要求。为了提高数据库服务性能,人们提出了分布式数据库
车标识别是指通过计算机视觉、图像处理与模式识别等方法从车辆图像中提取车标信息,从而获得机动车辆品牌信息的一种实用技术。车标识别技术是智能交通系统中的一个重要研究
由于互联网的飞速发展以及移动终端设备的持续增加,图像的数据量急剧上升。庞大的图像数据必然会对图像处理技术提出更高的要求。如何从庞大的图像库中快速有效地找到想要的