论文部分内容阅读
氧缺位TiO2-x薄膜是一种宽禁带n型半导体,具有比低温同性热解碳(LTIC)更好的血液相容性。前期的系列试验显示高温退火处理能进一步提高Ti-O薄膜的血液相容性能.。但目前对于其具体的抗凝血机制尚不清楚。研究中涉及材料与凝血系统生物体系(血浆蛋白、血小板)原位作用的研究也比较缺乏,深入到分子水平的理论解释还不能获得。因此,本论文在前期研究基础上,利用非平衡磁控溅射和真空高温退火的方法制备不同退火温度的Ti-O薄膜,并研究了其血液相容性,主要利用酶联免疫(ELISA)的方法测定了纤维蛋白原在样品表面的吸附和γ链暴露的程度。研究发现800℃退火后纤维蛋白原在其表面的较小的吸附量是导致其变性量较小的主要原因,使其表现出了较好的血液相容性。为进一步深入阐明材料对于凝血关键蛋白纤维蛋白原吸附行为的影响,制备不同退火温度的TiO2粉末作为模型材料用于研究纤维蛋白原及血小板在其表面的吸附行为。利用X射线衍射仪(XRD、X射线光电子能谱仪(XPS、Zeta电位测定、比表面积测定(BET)对粉末材料进行表征,利用流式细胞仪研究粉末对血小板的激活程度,利用Bradford法测定牛血清纤维蛋白原(FBG)在其表面的吸附解吸附行为,运用傅氏转换红外线光谱(FTIR)分析FBG在TiO2表面吸附后二级结构的变化。研究表明,800℃高温退火使得TiO2粉末晶型由锐钛矿逐渐转化为金红石,比表面积增加,酸性增强,使其在生理pH条件下携带更多负电荷;流式细胞仪结果证明800℃粉末样品相比于其他样品也较不易引起血小板激活;由于拥有较大的比表面积,FBG在未退火与600℃退火TiO2粉末表面吸附量远大于800℃退火后的TiO2粉末,但单位面积上的800℃其吸附量最大,主要原因为其表面存在大量的负电荷与FBGαC端产生静电吸引。FBG在800℃退火后TiO2粉末的吸附取向表现为side-on和end-on, end-on结构的不稳定性是导致800℃退火后的TiO2粉末表面存在较大解吸附的原因。FBG在TiO2粉末α螺旋大量减少,β转角增加,伴随着边链的增加,产生了较大的构象变化,边链的增加进一步说明了αC端参与到了FBG的吸附中。根据以上实验,可以推断出薄膜表面的电荷携带情况以及比表面积是影响纤维蛋白原粘附的非常重要的因素。